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Sandkühler J. Models and Mechanisms of Hyperalgesia and Allodynia. Physiol Rev 89: 707–758, 2009;
doi:10.1152/physrev.00025.2008.—Hyperalgesia and allodynia are frequent symptoms of disease and may be useful
adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Consid-
erable progress has been made in developing clinically relevant animal models for identifying the most significant
underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or
to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are
context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified
that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in
section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic
and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The
scientific use of language improves also in the field of pain research. Refined definitions of some technical terms
including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are
illustrated and annotated in section I.

I. ABOUT THIS REVIEW

Hyperalgesia and to some degree allodynia are fre-
quent symptoms of disease and may be useful adaptations

for better protection of vulnerable tissues. Enhanced sen-
sitivity for pain may, however, persist long after the initial
cause for pain has disappeared, then pain is no longer a
symptom but rather a disease in its own right. Changes of
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signal processing in the nervous system may contribute to
or may become the sole cause for hyperalgesia and allo-
dynia. It appears that sensitization of nociceptive A�- and
C-fiber nerve endings rarely outlast the primary cause for
pain and is restricted to the area of injury and thus may be
considered adaptive. In contrast, central changes in the
processing of nociceptive information may potentially
outlast their trigger events for days, months, and perhaps
years and may spread to sites somatotopically remote
from the primary cause of pain. Thus central mechanisms
constitute one of the causes for pain chronicity and pain
amplification in pain patients. In this review I address
animal models that are currently used to measure (sect. II)
or to induce (sect. III) hyperalgesia and allodynia in ani-
mals. Context-sensitive expression of hyperalgesia is dis-
cussed in section IV. Cellular elements that are indispensable
for the induction and/or the expression of hyperalgesia
and allodynia are summarized in section V. Periph-
eral mechanisms contributing to hyperalgesia and allo-
dynia have been reviewed extensively (194, 587). Reorga-
nization of sensory processing in cortical areas may also
be long-lasting (138, 518, 519, 532). The peripheral, spinal,
and supraspinal elements that are essential for hyperal-
gesia and allodynia are listed in section V. This review
focuses on spinal mechanisms of hyperalgesia and allo-
dynia (sect. VI) and relevant mutual neuron-immune inter-
actions (sect. VII). The new International Association for
the Study of Pain (IASP) definitions of technical terms
from 2008 are explained and used.

A. Definitions

In an early definition hyperalgesia was considered “a
state of increased intensity of pain sensation induced by
either noxious or ordinarily non-noxious stimulation of
peripheral tissue” (169). Thus no distinction was made
between hyperalgesia and allodynia. Later, the IASP took
over the task to improve the use of language in the pain
field by implementing a task force on taxonomy (recom-
mendations from 1994, revised 2008). For pain elicited by
normally nonpainfully stimuli, the made-up word allo-

dynia was coined by Professor Paul Potter of the Depart-
ment of the History of Medicine and Science at The
University of Western Ontario (see definitions on the IASP
homepage: www.iasp-pain.org). In the year 2008, the IASP
modified many of the definitions from 1994 substantially.
With respect to the definition of “hyperalgesia,” the orig-
inal definition experienced a revival, and the term allo-

dynia is now reserved to those forms of pain only that are
clearly caused by excitation of low-threshold sensory
nerve fibers. Some of the current definitions of the IASP
task force are reproduced here in quotes and modified
only if useful for the purpose of the present review.

1) Allodynia: “Pain in response to a nonnociceptive
stimulus.” The IASP task force comments on this term:

“This term should only be used, when it is known that the
test stimulus is not capable of activating nociceptors. At
present, dynamic tactile allodynia to tangential stroking
stimuli, e.g., brushing the skin is the only established
example. Future research may present evidence for other
types of allodynia. Whenever it is unclear, whether the
test stimulus may or may not activate nociceptors, hyper-
algesia is the preferred term.” Thus allodynia refers
largely to pain evoked by A�-fibers (see sect. VIF and
Fig. 1) or low-threshold A�- and C-fibers.

2) Analgesia: “Absence of pain in response to stimu-
lation which would normally be painful.”

3) Central sensitization: “Increased responsiveness
of nociceptive neurons in the central nervous system to
their normal or subthreshold afferent input.” Central sen-
sitization is a popular phrase in pain literature, but unfor-
tunately, it is used in many different and sometimes in-
consistent ways. At present, a generally accepted defini-
tion does not exist. The IASP task force for taxonomy
suggests the above quoted definition. This proposal
clearly defines a phenomenon but not its functional mean-
ing. Nociceptive neurons comprise a heterogeneous cell
group with putatively many different and sometimes op-
posing functions, including a large group of inhibitory
interneurons. Thus enhanced responsiveness of some of
these neurons could contribute to hyperalgesia. On the
other hand, enhanced responsiveness of inhibitory noci-
ceptive neurons may well lead to stronger feedback inhi-
bition and analgesia, while still other neurons may not
contribute to the experiences of pain but rather to altered
motor or vegetative responses to a noxious stimulus.
Another often used definition implies that “central sensi-
tization” would be an enhanced responsiveness of neu-
rons in the central nervous system leading to hyperalgesia
(76). In this definition “central sensitization” necessarily
leads to pain amplification due to enhanced neuronal
responsiveness. A causal relationship between firing rates
of any type of neurons in the central nervous system and
the perceived intensity of pain can, however, presently
not be ensured. At best, a tight correlation may be shown.
Thus none of the presently proposed central mechanisms
of hyperalgesia would strictly fulfill the latter definition of
“central sensitization.” In the literature “central sensitiza-
tion” is often not clearly defined, and sometimes two
mutually exclusive definitions are used within the same
publication.

4) Hyperalgesia: “Increased pain sensitivity.” IASP
task force comment (2008): “Hyperalgesia may include
both a decrease in threshold and an increase in supra-
threshold response. In many cases it may be difficult to
know whether or not the test stimulus is capable of
activating nociceptors. Therefore, it is useful to have an
umbrella term (hyperalgesia) for all types of increased
pain sensitivity.” See also Figure 1 for this new distinction
between hyperalgesia and allodynia.
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5) Hyperalgesia, primary: Hyperalgesia at the site of
injury. It is often believed that primary hyperalgesia is
mainly due to sensitization of nociceptive nerve endings.

Recent evidence suggests, however, that altered process-
ing in the central nervous system is equally important.

6) Hyperalgesia, secondary: Hyperalgesia in an area
adjacent to or remote of the site of injury. This form of
hyperalgesia is not caused by sensitization of nociceptive
nerve endings but solely due to changes in the processing
of sensory information in the central nervous system.
While the induction of secondary hyperalgesia requires
activity in nociceptive nerve fibers, its maintenance is
independent of an afferent barrage as local aesthetic
block of the injured site preempts but does not reverse
secondary hyperalgesia.

7) Hyperalgesia, referred: Hyperalgesia may not only
exist within an area of tissue damage but also in the skin
(head zone) remote from the inner organ or muscle which
is affected.

8) Long-term potentiation: Long-term potentiation of
synaptic strength (LTP) is an intensively studied model of
neuronal plasticity. It is defined as an increase in synaptic
efficacy that outlasts the duration of the conditioning
stimulus for at least 30 min (early LTP), a few hours, or
days to months (late LTP). Synaptic strength can be quan-
titatively assessed by measuring changes of the postsyn-
aptic membrane potential or postsynaptic currents in re-
sponse to a presynaptic stimulus. Normally synaptic
strength is measured as the amplitude or area under the
curve of postsynaptic excitatory or inhibitory potentials
or currents. Alternatively, extracellular recordings of field
potentials are being used. Action potential firing and
polysynaptic responses not only depend on the strength
of synaptic transmission but also on intrinsic membrane
properties (e.g., action potential thresholds) and network
properties and can thus not be used to quantify synaptic
strength and changes thereof.

9) Nociceptive stimulus: “An actually or potentially
tissue damaging event transduced and encoded by noci-
ceptors.”

10) Nociceptor: “A sensory receptor that is capable
of transducing and encoding noxious stimuli.”

11) Noxious stimulus: “An actually or potentially tis-
sue-damaging event.”

12) Pain: “An unpleasant sensory and emotional ex-
perience associated with actual or potential tissue dam-
age, or described in terms of such damage”.

13) Pain versus nociception: The above definitions of
pain and its derivates require a conscious subject that is
able to experience pain. The molecular, cellular, and sys-
temic mechanisms which deal with the processing of
pain-related information, its amplification, or depression
are called nociceptive, pro-nociceptive, and anti-nocicep-
tive, respectively. Pain is just one of many possible end
points of nociception. Others include but are not limited
to withdrawal reflexes, vegetative and hormonal re-
sponses, and vocalization, all of which normally accom-
pany pain experience but may under experimental and

FIG. 1. The changes made in the year 2008 by the IASP task force
in defining “hyperalgesia” and “allodynia.” In A, the obsolete definitions
are illustrated: pain in response to previously nonpainful stimuli was
defined as “allodynia” (blue area in the stimulus-response function). T0

refers to the normal pain threshold, and TS refers to the pain threshold
after sensitization. Enhanced responses to normally painful stimuli were
called “hyperalgesia” (red area). A single mechanism, for example, the
sensitization of nociceptive nerve endings (e.g., during a sunburn) lead-
ing to a shift in the stimulus-response function to lower stimulus inten-
sities would always cause allodynia and hyperalgesia in combination but
never in isolation, making this distinction meaningless. In B, the new
definitions are illustrated. All forms of pain amplification including
lowering in thresholds are now summarized under the umbrella term
hyperalgesia (red ordinate and red area in top graph). Only if pain is
cleary induced by low-threshold fibers should the term allodynia be
used (blue ordinate in bottom graph). T0/S refers to the normal threshold
for touch sensation which is identical to (or near) the stimulation
threshold for allodynia. In all cases where it is not known whether low-
or high-threshold sensory nerve fibers are involved, the umbrella term
hyperalgesia should be used.
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some pathological conditions be observed in the absence
of pain experience, e.g., in the intact but deeply anesthe-
tized subject or in lesioned animals.

The experience of pain is not a phenomenological
entity but rather a multidimensional process that may
include to varying degrees sensory-discriminative aspects
and emotional-aversive components, all of which involve
activation of different brain areas and neuronal ensem-
bles. Thus, when reporting “hyperalgesia,” this always
implies a contextual definition which is, in a strict sense,
only valid for the experimental context in which it was
assessed. In the literature, it often does not reflect a
measure of pain but one of its surrogates, i.e., signs of
amplified nociception, e.g., exaggerated withdrawal re-
flexes.

Hyperalgesia and allodynia are classified according
to the type of stimulus which elicits the sensation of pain.
Thermal (heat or cold) stimuli or mechanical brush,
pinch, or pressure stimuli are most often used. In addi-
tion, moving (dynamic) or static mechanical touch stimuli
are being used. Thereby, mechanical and thermal (heat or
cold) hyperalgesia and mechanical dynamic allodynia can
be differentiated (see also Fig. 1).

The mechanisms underlying the various forms of
hyperalgesia and allodynia are not alike (see Fig. 3) but
may differ with respect to molecular genetic, physiologi-
cal, and pharmacological profiles (271, 359).

It is now generally accepted that excitation of thin
high-threshold (i.e., nociceptive) primary afferent nerve
fibers which are weakly myelinated (A�-fibers) or unmy-
elinated (C-fibers) triggers nociceptive pain. But not all
A�- and C-fibers are nociceptive as some respond to low-
level natural stimuli. On the other hand, almost all thick
and heavily myelinated A�-fibers are low threshold, and
only few A�-fibers may be nociceptive. Thus selective
excitation of A�-fibers, e.g., by electrical nerve stimula-
tion, normally does not evoke pain. The roles of the many
different types of spinal dorsal neurons for a pain sensa-
tion are much less clear. Spinal dorsal horn neurons have
been classified by some of their properties. A popular
scheme is based on the type of excitatory mono- and/or
polysynaptic afferent input.

14) High-threshold spinal neurons (nociceptive spe-
cific neuron, nociceptor specific neuron, class 3 neuron):
These neurons selectively respond to stimulation of pri-
mary afferent nerve fibers with high thresholds, i.e., to
nociceptive nerve fibers. Thus nociceptor specific neu-
rons are exclusively driven by nociceptors.

15) Wide-dynamic range spinal neurons (multirecep-
tive neuron; class 2 neuron): These neurons nonselec-
tively respond to both primary afferents with high and
with low thresholds, i.e., to nociceptive nerve fibers and
to touch fibers for example.

16) Low-threshold neuron spinal neurons (class 1
neurons): These neurons respond to primary afferent

nerve fibers with low thresholds. They have no excitatory
input from nociceptors, thus increasing stimulation inten-
sity into the noxious range does not lead to substantial
increases in excitation.

This popular classification scheme rests on the re-
sponse properties of spinal dorsal horn neurons to natural
stimulation within the neurons’ receptive field or electri-
cal stimulation of afferent nerve fibers. These response
profiles are, however, not static but context sensitive and
may change with the level of the membrane potential so
that, e.g., lowering membrane potential of “nociceptor
specific” neurons may result in their transformation into
“multireceptive” neurons (572). Furthermore, when com-
paring the incidence of recordings made from either low-
threshold or wide-dynamic range neurons in awake, drug-
free cat, wide-dynamic range neurons are much less often
encountered as expected from acute preparations in anes-
thetized animals (82). When barbiturates are applied, the
likelihood of recording from wide-dynamic range neurons
increases (82, 83). Another technique to group neurons by
their electrophysiological properties including sensory in-
put is the cluster analysis (280).

17) Spinal neuron: Projection neuron: Another way
of grouping neurons is by their supraspinal projection.
In vivo this can be achieved by electrical deep brain
stimulation of the ascending axon and recording the an-
tidromic action potential discharge. Depending on the
location of the stimulation electrodes, neurons are then
classified according to the ascending tract they project to,
e.g., the spinothalamic tract or dorsal column pathway or
by their presumed projection territory, e.g., the ventrolat-
eral thalamus (581). One should, however, keep several
caveats in mind: 1) The area from which antidromic
spikes can be elicited is not necessarily the area of ter-
mination. It is equally well possible that fibers of passage
are excited. 2) An identified projection area must not
necessarily be the only or even the main projection area
of the neuron under study, as some spinal dorsal horn
neurons project to more than one supraspinal site.
3) Neurons for which no supraspinal projection area
could be identified still could be neurons with a projection
that just was missed.

For in vitro recordings spinal projection neurons can
be identified by retrograde transport of a fluorescent
marker such as DiI. This marker can then easily be de-
tected in spinal cord slices prepared 3–4 days after dye
injection using a fluorescence microscope (202, 204).

18) Peripheral sensitization: “Increased responsive-
ness and reduced threshold of nociceptors to stimulation
of their receptive fields.”

19) Wind-up: Wind-up is an electrophysiological phe-
nomenon seen in some nociceptive neurons in response
to repetitive stimulation of primary afferent C-fibers.
When C-fibers are stimulated at frequencies between 0.5
and 5 Hz, some postsynaptic neurons respond with an
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increasing discharge rate to the first 10–30 stimuli (i.e., in
the first few seconds of an ongoing noxious stimulation).
Thereafter, the response reaches a plateau or may de-
cline. Wind-up is seen under normal experimental condi-
tions, i.e., in the absence of any intentional inflammation,
trauma, or nerve injury and thus constitutes a normal
coding property of some nociceptive spinal dorsal horn
neurons. Consequently, wind-up per se is not a mecha-
nism of hyperalgesia. However, lowering the wind-up
threshold frequency or enhancing the wind-up response
may indicate that some form of signal amplification has
been induced, for example, LTP of synaptic strength be-
tween primary afferent C-fibers and spinal dorsal horn
neurons. Thus enhanced wind-up may be a useful marker
of increased responsiveness of some spinal dorsal horn
neurons to C-fiber stimulation.

B. Hyperalgesia and Allodynia as Symptoms

The proper function of the nociceptive system en-
ables and enforces protective behavioral responses such
as withdrawal or avoidance to acutely painful stimuli. In
case of an injury, the vulnerability of the affected tissue
increases. The nociceptive system adapts to this en-
hanced vulnerability by locally lowering the nociceptive
thresholds and by facilitation of nocifensive responses,
thereby adequate tissue protection is ensured. The behav-
ioral correlates of these adaptations are allodynia and
hyperalgesia. Thus neither hyperalgesia nor allodynia is
per se pathological or a sign of an inadequate response
but may rather be an appropriate shift in pain threshold to
prevent further tissue damage. Painful syndromes are
typical for a large number of diseases and pain intensity if
often used by the patients and their health professionals
to evaluate the progression of the disease or the success
of the therapy.

C. Hyperalgesia and Allodynia as Diseases

The intensity, the duration, and/or the location of
pain may not always adequately reflect any known under-
lying cause. For example, hyperalgesia and allodynia may
persist long after the initial cause for pain, e.g., an injury
or an inflammation has healed completely. Furthermore,
hyperalgesia and allodynia may occur due to dysfunction
of parts of the peripheral or central nervous system. Thus,
when the location, the duration, or the magnitude of pain,
hyperalgesia, and/or allodynia has become maladaptive
rather than protective, then pain is no longer a meaningful
homeostatic factor or symptom of a disease but rather a
disease on its own right.

II. METHODS TO ASSESS HYPERALGESIA OR

ALLODYNIA

Because pain cannot be measured directly in ani-
mals, it is essential to use quantifiable, sensitive, and
specific surrogates of pain sensation. A number of differ-
ent surrogates have been suggested to fulfill these criteria.
One should, however, keep in mind that any reaction to a
painful stimulus is not necessarily evidence for a concom-
itant sensation of pain. Thus none of these tests measures
hyperalgesia or allodynia directly, but rather enhanced
nociception. This distinction is, however, rarely made in
the literature or in this review.

Signs of evoked pain in animals include withdrawal
of a paw or the tail from the stimulus source, vocalization
upon sensory stimulation, reduced locomotion, or agita-
tion. Motor reflexes may not only be elicited by noxious
stimulation but also by innocuous stimuli (470), i.e., may
not be specific for nociception. Furthermore, any form of
behavior may be modulated by the motor system which
constitutes a potential confounding effect (430).

Suggested signs of spontaneous pain include audible
and ultrasonic vocalization, conditional place avoidance,
analgesic self-administration, excessive grooming, and
self-mutilation of a limb, to name a few. These parameters
are rarely used in animal studies (360). Autotomy of an
affected limb has also been considered a sign of sponta-
neous pain after nerve injury (75). A systematic method-
ological review of animal models of pain is provided by Le
Bars et al. (275). The impact of strain differences in mice
for nociceptive tests is discussed by Mogil et al. (361).
Table 1 summarizes presently used methods to assess
hyperalgesia and allodynia.

III. METHODS TO INDUCE HYPERALGESIA

OR ALLODYNIA IN ANIMALS

A. Animal Welfare Issues: Replace, Reduce, Refine

Most countries have issued animal welfare acts (see,
for example, those of Sweden, The Netherlands, Switzer-
land, or Germany), and most scientific journals enforce
full compliance with local and institutional regulations for
animal welfare before considering any manuscript for
publication. The IASP has issued ethical guidelines for the
investigation of experimental pain in conscious animals
(see http://www.iasp-pain.org/). These guidelines are,
however, from 1982 and outdated by now. A revision
incorporating contemporary research is desirable. Fur-
thermore, several publications have also addressed this
important topic (see, e.g., Refs. 31, 137, 182, 489, 495).
General information on animal welfare issues can be ob-
tained from a number of sources including http://awic.
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nal.usda.gov/. See Table 2 for a summary of contemporary
models to study hyperalgesia and allodynia in animals.

B. Drug-Induced Hyperalgesia and Allodynia

Drug-induced pain amplification or pain generation is
relevant both in preclinical studies where they serve as
tools for animal models of pain and in the clinical situa-
tion where they may be unwanted effects of therapeutics
including chemotherapeutics and opioids. It is an intrigu-
ing yet unproven hypothesis that many of the substances
that are sufficient to induce hyperalgesia and/or allodynia
may do so by increasing the free cytosolic Ca2� concen-
tration in neuronal and nonneuronal cells, e.g., in spinal
dorsal horn. For example, intrathecal injection of a cal-
cium ionophore (A23187) or of a calcium channel agonist
(BAY K 8644) may facilitate the second, but not the first
phase of the Formalin test (77). Furthermore, nociceptive
behavior that can be induced by intrathecal injection of a
neurokinin 1 receptor agonist is blocked by intrathecal

injection of dantrolene, which reduces the release of cal-
cium from intracellular stores, or by intrathecal injection
of thapsigargin, which inhibits the reticular Ca2�-ATPase
thereby blocking intracellular calcium storage (16). Like-
wise, in diabetic mice, intrathecal application of ryano-
dine, which blocks Ca2� release from Ca2�/caffeine-sen-
sitive microsomal pools, increases tail-flick latencies
(391). See Table 3 for a summary of substances that
induce hyperalgesia and/or dynamic mechanical allodynia
when injected into the intrathecal space.

C. Diet-Induced Hyperalgesia or Allodynia

An early report showed that rats fed a tryptophan-
poor corn diet have reduced levels of brain serotonin and
display enhanced responsiveness to electric shock. This
diet-induced hyperalgesia can be reversed by feeding the
animals diets with adequate amounts of tryptophan, or by
systemic injections of this amino acid (306).

In rats fed an Mg2�-deficient diet for 10 days, Mg2�

levels in plasma and cerebrospinal fluid fall after a few

TABLE 1. Methods to assess hyperalgesia or allodynia

Modality
Test Name (Most

Common) Test Method Testing Site Outcome Parameter Reference Nos.

Mechanical von Frey Application of nonnoxious
calibrated static hairs on
skin

Hindpaw, face Force threshold to elicit paw
withdrawal (static mechanical
hyperalgesia*)

66, 109

Randal Sellito Application of linearly
increasing mechanical force
in noxious range on skin

Hindpaw Force threshold to elicit paw
withdrawal from noxious
stimulus (mechanical
hyperalgesia*)

18, 424

Unnamed Innocuous brushing, stroking
of skin

Hindpaw Time latency to elicit paw
withdrawal or nociceptive
behaviors (dynamic mechanical
allodynia)

131, 599

Unnamed Noxious mechanical
stimulation to viscera

Visceral organs
(colon, bladder)

Thresholds or number or strength
of muscle contractions,
autonomic responses
(hyperalgesia)

381

Heat Tail flick Application of radiant heat on
tail or immersion of tail in
hot water

Tail Time latency to elicit tail
withdrawal (heat hyperalgesia)

122, 183

Plantar Hargreave’s Application of radiant heat on
skin

Hindpaw Time latency to elicit paw
withdrawal (heat hyperalgesia)

171, 608

Hot plate Animal placed on heated metal
plate

Hindpaw (forepaws) Time latency to elicit nociceptive or
escape behavior (heat
hyperalgesia)

275, 341

Cold Acetone Application of acetone on skin Hindpaw Duration/intensity of nociceptive
behaviors (cold hyperalgesia)

71, 548

Cold plate Animal placed on cooled metal
plate

Hindpaw Time latency to elicit nociceptive or
escape behaviors (cold
hyperalgesia)

11, 209

Cold water Animal placed in shallow cold
water bath

Hindpaw Time latency to elicit nociceptive or
escape behaviors, duration and
intensity of nociceptive behaviors
(cold hyperalgesia)

20, 340

Electrical Unnamed Electrical current application Various: tail, paw,
viscera, dental
pulp

Withdrawal thresholds, vocalization,
escape latency (allodynia)

43, 45, 275, 507

* According to the new definition by the IASP: in the previous literature, this was labeled “mechanical allodynia” (see also section I and Fig 1).
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714 JÜRGEN SANDKÜHLER
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days and recover within 1 day after feeding a normal diet.
Mechanical hyperalgesia (Randall-Sellito pressure test) is
significant at day 10, the first day tested, and outlasts the
period of Mg2�-deficient diet for at least 10 days (13).
Hyperalgesia induced by Mg2� deficiency is partially re-
versed by NMDA receptor blockade (119).

Chronic administration of a diet in which all choline
is replaced by N-aminodeanol, an unnatural choline ana-
log, results in mechanical hyperalgesia in rats along with
other classical hypocholinergic symptoms, i.e., progres-
sive loss of learning and memory capacities, hyperkinesis,
and hyperactivity (210).

D. Anxiety Level Modulates Pain Sensitivity

In contrast to acute fear, which may lead to stress-
induced analgesia (see, e.g., Ref. 285), anxiety may en-
hance pain sensitivity (410, 433). In some groups of hu-
man pain patients, pain sensitivity may positively corre-
late with basal anxiety levels. Similarly, different strains
of rats may also display different levels of baseline anxi-
ety when assessed by the acoustic startle response and
open-arm exploration in the elevated plus-maze assay. In
these tests, Wistar-Kyoto rats reveal higher anxiety levels
than Sprague-Dawley or Fisher-344 rats. When innocuous
pressure stimuli are applied to the normal or to the sen-
sitized colon, these strains of rats differ in their respon-
siveness. Both under normal conditions and after sensiti-
zation, high-anxiety Wistar-Kyoto rats respond with sig-
nificantly more abdominal contraction to colon distension,
suggesting that genetically determined anxiety levels are
associated with higher visceral sensitivity (160).

E. Chronic Stress Induces Hyperalgesia

and Allodynia

Repeated exposure to a cold environment, i.e., to a
nonnoxious stressful situation, causes mechanical hyper-
algesia (pressure test) that outlasts the stressful period
for 3 days (462). Similarly, chronic, but not acute, re-
straint stress leads to thermal hyperalgesia in the tail-flick
assay (145).

IV. GENERAL CONDITIONS THAT INFLUENCE

INDUCTION OF HYPERALGESIA

OR ALLODYNIA

Both normal nociceptive behavior and susceptibility
for the development of hyperalgesia and allodynia may
vary between species, strains, sex, and the diet fed, indi-
cating substantial genetic and dietetic impacts (483).T

A
B

LE
2—

C
o
n

ti
n

u
e
d

H
um

an
R

el
ev

an
ce

/D
is

ea
se

M
od

el
P

ri
m

ar
y

M
ec

ha
ni

sm
In

du
ct

io
n

M
et

ho
d

M
od

el
N

am
e

(M
os

t
C

om
m

on
ly

U
se

d)

N
oc

ic
ep

ti
on

P
ro

du
ce

d

R
ef

er
en

ce
N

os
.

M
ec

ha
ni

ca
l

al
lo

dy
ni

a
M

ec
ha

ni
ca

l
hy

pe
ra

lg
es

ia
H

ea
t

hy
pe

ra
lg

es
ia

C
ol

d
hy

pe
ra

lg
es

ia
O

th
er

be
ha

vi
or

s

Sp
in

al
co

rd
in

ju
ry

ne
ur

op
at

hi
c

pa
in

Sp
in

al
co

rd
le

si
on

s
Is

ch
em

ic
or

tr
au

m
at

ic
co

nt
us

io
n,

co
m

pr
es

si
on

,
or

tr
an

se
ct

io
n

of
sp

in
al

co
rd

Sp
in

al
co

rd
in

ju
ry

●
●

●
●

12
4,

16
7,

60
9

N
eu

ri
ti

s,
ne

ur
op

at
hi

c
pa

in
N

eu
ri

ti
s

A
cu

te
in

je
ct

io
n

or
pe

ri
ne

ur
on

al
ad

m
in

is
tr

at
io

n
of

in
fla

m
m

at
or

y
ag

en
ts

di
re

ct
ly

on
ne

rv
es

Sc
ia

ti
c

in
fla

m
m

at
or

y
ne

ur
it

is
●

�
�

65
,

55
6

M
ig

ra
in

e
V

ar
io

us
V

ar
io

us
m

an
ip

ul
at

io
ns

:
ne

ur
ov

as
cu

la
r,

el
ec

tr
ic

al
,

ge
ne

ti
c

V
ar

io
us

●
●

●
V

ar
io

us
m

ea
su

re
s

of
sp

on
ta

ne
ou

s
pa

in

38
,

12
3

D
ru

g-
in

du
ce

d
ne

ur
op

at
hi

c
pa

in
Sy

st
em

ic
ad

m
in

is
tr

at
io

n
of

cl
in

ic
al

ly
us

ed
th

er
ap

eu
ti

c
ag

en
t

C
he

m
ot

he
ra

pe
ut

ic
ag

en
ts

(v
in

cr
is

ti
ne

,
pa

cl
it

ax
el

)

●
●

●
●

Se
e

se
ct

.
II

IB
41

5,
51

5

A
nt

ir
et

ro
vi

ra
l

ag
en

ts
●

�
22

2,
55

5

So
lid

ci
rc

le
s

in
di

ca
te

no
ci

ce
pt

io
n

pr
od

uc
ed

,
op

en
ci

rc
le

s
in

di
ca

te
no

ci
ce

pt
io

n
te

st
ed

bu
t

no
t

pr
od

uc
ed

,
an

d
em

pt
y

sp
ac

es
in

di
ca

te
no

ci
ce

pt
io

n
no

t
te

st
ed

or
co

nt
ro

ve
rs

ia
l

ef
fe

ct
s.

MODELS AND MECHANISMS OF HYPERALGESIA AND ALLODYNIA 715

Physiol Rev • VOL 89 • APRIL 2009 • www.prv.org

http://physrev.physiology.org


T
A

B
LE

3.
In

tr
a

th
e
c
a
l

c
h
e
m

ic
a
l

in
d
u

c
ti

o
n

o
f

h
y
p
e
r
a
lg

e
s
ia

o
r

a
ll
o
d
y
n

ia

C
la

ss
of

Su
bs

ta
nc

e
M

od
e

of
A

ct
io

n
C

om
po

un
d

B
eh

av
io

ra
l

T
es

ts
Sh

ow
n

to
P

ro
du

ce
N

oc
ic

ep
ti

on

R
ef

er
en

ce
N

os
.

M
ec

ha
ni

ca
l

al
lo

dy
ni

a
M

ec
ha

ni
ca

l
hy

pe
ra

lg
es

ia
H

ea
t

hy
pe

ra
lg

es
ia

C
ol

d
hy

pe
ra

lg
es

ia
O

th
er

be
ha

vi
or

s

O
pi

oi
ds

�
-O

pi
oi

d
re

ce
pt

or
ac

ti
va

ti
on

M
or

ph
in

e
●

●
11

1,
32

1,
53

7,
58

5
D

A
M

G
O

●
●

53
8

P
la

nt
al

ka
lo

id
-b

as
ed

ch
em

ot
he

ra
pe

ut
ic

s
M

it
ot

ic
in

hi
bi

to
rs

P
ac

lit
ax

el
●

●
●

N
or

m
al

m
ot

or
22

,
41

5
V

in
cr

is
ti

ne
●

�
10

,
60

P
la

ti
nu

m
-b

as
ed

ch
em

ot
he

ra
pe

ut
ic

s
In

hi
bi

ti
on

of
D

N
A

sy
nt

he
si

s
C

is
pl

at
in

●
21

O
xa

lip
la

ti
n

●
●

29
4

G
lu

ta
m

at
e

re
ce

pt
or

ag
on

is
ts

A
ct

iv
at

io
n

of
N

M
D

A
re

ce
pt

or
s

N
M

D
A

●
●

Sc
ra

tc
hi

ng
an

d
bi

ti
ng

11
2,

50
3,

59
8

A
M

P
A

●
59

8
Q

ui
sq

ua
la

te
●

●
Sc

ra
tc

hi
ng

an
d

bi
ti

ng
50

3,
61

0

K
ai

na
te

�
Sc

ra
tc

hi
ng

an
d

bi
ti

ng
73

,
15

4

A
ct

iv
at

io
n

of
cl

as
s

I
m

et
ab

ot
ro

pi
c

gl
ut

am
at

e
re

ce
pt

or

D
H

P
G

●
●

Sc
ra

tc
hi

ng
an

d
bi

ti
ng

11
3,

13
4,

13
5

Su
bs

ta
nc

es
ac

ti
ng

on
ni

tr
ic

ox
id

e
m

et
ab

ol
is

m

N
it

ri
c

ox
id

e
do

no
rs

So
di

um
ni

tr
op

ru
ss

id
e

●
24

5
H

yd
ro

xy
la

m
in

e
●

24
5

Su
bs

tr
at

e
of

ni
tr

ic
ox

id
e

sy
nt

ha
se

L-
A

rg
in

in
e

●
●

●
33

3,
35

3

T
ar

ge
t

of
ni

tr
ic

ox
id

e
C

el
l-p

er
m

ea
bl

e
an

al
og

s
of

cG
M

P
:

8-
br

om
o-

cG
M

P
,

D
b-

cG
M

P
●

14
8

A
T

P
A

go
ni

st
at

P
2X

re
ce

pt
or

A
T

P
,

�
,�

-m
et

hy
le

ne
-A

T
P

●
37

5
C

yt
ok

in
es

A
go

ni
st

at
sp

ec
ifi

c
ce

ll-
su

rf
ac

e
re

ce
pt

or
s,

C
X

3C
re

ce
pt

or
1

Sp
in

al
fr

ac
ta

lk
in

e
(C

X
C

3C
L1

)
●

●
34

8

B
in

di
ng

to
T

N
F

-R
1,

T
N

F
-R

2,
IL

1R
1

(C
D

12
1a

),
IL

1R
2

(C
D

12
1b

),
IL

6R
(C

D
12

6)
,

gl
yc

op
ro

te
in

13
0

(g
p1

30
,

IL
6S

T
,

IL
6�

or
C

D
13

0)

T
N

F
-�

●
42

8

IL
-1

�
●

●
42

8,
50

4

IL
-6

●
●

�
54

9,
55

7

A
go

ni
st

at
in

te
rf

er
on

(I
F

N
)-

�
re

ce
pt

or
IF

N
-�

●

Li
po

po
ly

sa
cc

ha
ri

de
s

B
in

ds
th

e
C

D
14

/T
LR

4/
M

D
2

re
ce

pt
or

co
m

pl
ex

,
w

hi
ch

pr
om

ot
es

se
cr

et
io

n
of

pr
o-

in
fla

m
m

at
or

y
cy

to
ki

ne
s

LP
S

●
●

52
,

33
4

Li
pi

ds
P

la
te

le
t

ac
ti

va
ti

ng
fa

ct
or

(P
A

F
)

●
●

●
36

6,
36

7
P

ro
st

an
oi

ds
B

in
di

ng
to

P
G

E
2
,

E
P

1,
E

P
3,

E
P

4
re

ce
pt

or
s

P
G

E
1

●
●

45
1

P
G

E
2
,

P
G

D
2
,

●
●

W
ri

th
in

g
35

7,
52

7
P

G
F

2
�

●
�

A
gi

ta
ti

on
35

6,
52

7
N

eu
ro

tr
op

hi
c

fa
ct

or
s

B
in

di
ng

to
T

rk
A

,
T

rk
B

,
p7

5
re

ce
pt

or
s,

G
F

R
�

1
N

G
F

�
●

�
53

,
31

3
B

D
N

F
●

15
8,

40
8

N
T

-3
�

31
3

G
D

N
F

�
�

46
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A. Gender

Carrageenan injections into a hindpaw at the day of
birth affects nociception at adulthood, and this may be
different in male and female rats. When a persistent in-
flammation is induced in adult rats with an intraplantar
injection of complete Freund’s adjuvant, neonatally in-
jured females display stronger inflammatory hyperalgesia
compared with neonatally injured males and controls
(269). There are also significant gender differences with
respect to the susceptibility to develop neuropathic symp-
toms. Female Sprague-Dawley and Long-Evans rats dis-
play increased hypersensitivity following nerve root in-
jury compared with males. No sex differences were ob-
served, however, in Holtzman rats (261). It is generally
believed that endogenous sex steroids play a key role in
mediating these sex differences in nociception (260).

B. Genotype

In eight different strains or lines of Sprague-Dawley
rats, baseline nociceptive responses to heat and mechan-
ical stimulation as well as heat hyperalgesia, mechanical
hyperalgesia, and autotomy following partial sciatic nerve
ligation vary greatly. Rats tested included “genetically
epilepsy-prone rats,” “high autotomy selection line,” “low
autotomy selection line,” “flinders sensitive line,” “Lewis
rats” (an inbred line), “Fisher 344” (an inbred line), and
“Sabra rats,” an outbred line. Baseline nociceptive thresh-
olds are highest in “genetically epilepsy-prone rats” and
lowest in “Fischer 344” rats. Autotomy scores are lowest
in “Lewis rats” and highest in “high autotomy rats” (484).
Likewise, baseline nociceptive responses and tactile hy-
peralgesia after an ischemic lesion of the sciatic nerve are
different in four strains or lines of rats: “Sprague-Dawley,”
“Wistar-Kyoto,” “spontaneously hypertensive,” and “Dark-
Agouti rats” and two substrains of “Sprague-Dawley” rats
supplied from two different vendors (Sprague-Dawley-BK
and Sprague-Dawley-DK). Nerve lesions lead to cold hy-
peralgesia in “Wistar-Kyoto” and “Sprague-Dawley-BK”
rats only. “Sprague-Dawley-DK” rats develop more severe
mechanical hyperalgesia than “Sprague-Dawley-BK” rats
(597). Complete Freund’s adjuvant-induced thermal
hyperalgesia is stronger in “Fisher 344” rats than in
“Sprague-Dawley” or “Lewis” rats (619).

Similar differences in nociceptive behavior can be
demonstrated in different strains of mice. Baseline paw
withdrawal thresholds vary from 0.3 to 1.5 g when 15
different strains of mice are tested. These strains of mice
also differ with respect to opioid-induced mechanical hy-
peralgesia. The degree of hyperalgesia ranges from 30 to
85% reduction in mechanical nociceptive thresholds
(290). Likewise, from 10 different mouse strains, one
strain displayed an especially robust mechanical hyperal-

gesia following paclitaxel treatment, while another strain
was fully resistant to this treatment (491). Some of the
species and strain differences in response to manipula-
tions of the sciatic nerve may be due to differences in
sciatic nerve anatomy (434).

Mutations in single genes may also have profound
effects on nociception. For example, the reeler gene is an
autosomal recessive mutation that may naturally occur in
humans. When a similar mutation is induced in mice, the
protein product Reelin, which is a large secreted extra-
cellular matrix type protein, is missing. This protein is
involved in proper neuronal positioning during develop-
ment. The phenotype of mutant mice includes thermal
hyperalgesia in the Hargreaves test but reduced sensitiv-
ity to noxious mechanical stimuli (von Frey hairs) (8,
547).

C. Age

A large body of evidence suggests that in neonatal
and young rats nociception is quantitatively and qualita-
tively different compared with the adults (see reviews by
Fitzgerald and colleagues, Refs. 136, 378). For example,
secondary hyperalgesia may be induced only at later de-
velopmental stages in contrast to primary hyperalgesia.
Mustard oil or capsaicin induce primary hyperalgesia at
all postnatal days tested as assessed by electromyography
flexion reflex recordings in response to mechanical stim-
uli at a hindpaw. In contrast, secondary hyperalgesia can-
not be demonstrated at postnatal day 3 but is evident at
postnatal days 10 and 21 (552). Likewise, neuropathic
pain behavior is not observed in neonatal rats. In the
spared nerve injury model, tactile hyperalgesia does not
develop if surgery is performed before the fourth postna-
tal week. This delayed susceptibility to painful neuropa-
thies may be caused by an immature response profile of
spinal microglia (369). On the other hand, intraplantar
injections of endothelin-1 produce a longer lasting me-
chanical hyperalgesia in young (postnatal day 7) rats than
in adults (330).

D. Diet

Composition of the diet may have profound effects
on hyperalgesia and allodynia induced by nerve lesions. In
one study, “Wistar” rats were fed with a casein-based,
fat-free diet for 1 wk preceding partial sciatic nerve liga-
tion and in addition either hemp oil (20% omega-3 poly-
unsaturated fatty acids) or corn oil (0.7% omega-3 level).
An omega-3-rich diet was associated with a stronger heat
hyperalgesia, but tactile hyperalgesia was not different
between dietary groups (404). When rats are fed since
weaning a diet containing 85% soy protein, partial sciatic
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nerve ligation evokes less severe mechanical hyperalgesia
(von Frey hairs) and thermal hyperalgesia (Hargreaves
test) compared with animals with a normal diet. When a
soy-rich diet is terminated 15 h before nerve lesion, rats
develop full hyperalgesia (480). In rats fed with a syn-
thetic polyamine-deficient diet, unilateral injection of car-
rageenan into a hindpaw induces a bilateral mechanical
hyperalgesia (Randall-Sellito pressure test) that is less
pronounced than in control animals (125).

Male mice with a prolonged restriction of caloric
intake (60% of ad libitum) show fewer licking or biting
responses in the Formalin test. Also, they show longer
response latencies in the hot-plate test. In ad libitum
control mice but not in caloric-restricted mice, partial tail
amputation induces thermal hyperalgesia. Injections of
collagen subcutaneously lead to thermal hyperalgesia
(Hot plate test) in some strains. This collagen-induced
arthritic hyperalgesia can be blocked reversibly during
9–15 wk of caloric restriction (170).

In rats treated with streptozotocin to induce diabetic
polyneuropathy, thermal hyperalgesia (Hargreaves test)
and mechanical hyperalgesia (von Frey thresholds) are
reduced in those animals that received a 2% taurine-sup-
plemented diet for 6–12 wk. Imaging of Ca2� gradients in
sensory neurons suggests that impaired Ca2� homeosta-
sis in diabetic rats is partially reversed by taurine supple-
mented diet (287).

V. CELLULAR SYSTEMS THAT ARE

INDISPENSABLE FOR HYPERALGESIA

AND ALLODYNIA

A classical proof for the involvement of a particu-
lar element for a given function is by selective inacti-
vation or destruction of that element. In pain research,
much information has been gained from targeted inac-
tivation or destruction of brain regions or fiber tracts.
The selective destruction of a well-defined group of
neuronal or nonneuronal cells by the cell toxin saporin
is a novel, powerful tool to assess their role for hyper-
algesia and allodynia in the behaving animals (12, 249,
318, 379, 383).

Figure 2 summarizes cellular elements that are re-
quired for the full expression of hyperalgesia and/or allo-
dynia in some animal models of inflammatory or neuro-
pathic pain. Obviously not all these elements have been
tested in all models and most likely are also not required
for all forms of enhanced pain sensitivity.

Sensory nerve fibers consist of the following: 1) cap-
saicin-sensitive C-fibers (61, 99, 234, 237, 336, 354, 355,
395, 476, 481), 2) IB4-sensitive C-fibers (513, 513), and
3) vagal afferents (310, 567).

Spinal cord cells consist of the following: 4) spinal
dorsal horn neurons that express the neurokinin I re-

ceptor (318, 383, 542, 545, 575, 611), 5) microglia (192,
276, 375, 423, 502, 564, 618), and 6) astrocytes (213, 387,
624).

Spinal cord fiber tracts consist of the following:
7) dorsal columns (185, 239, 397, 399, 447), 8) anterior

FIG. 2. Neuronal elements that are indispensable for some forms of
hyperalgesia and/or allodynia. Afferent fiber systems: 1) C-fibers that
express the TRPV1 ion channel, 2) C-fibers that express the marker IB4,
3) vagal afferent fibers. Spinal dorsal horn cells: 4) lamina I neurons that
express the neurokinin 1 receptor, 5) microglia, 6) astrocytes. Spinal
fiber tracts: 7) dorsal column fibers, 8) fibers traveling in the anterolat-
eral funiculus, 9) fibers traveling in the lateral funiculus. Brain nuclei:
10) rostral ventromedial medulla, 11) nuclei reticularis gigantocellu-
laris, 12) thalamic nuclei, 13) anterior cingulate cortex, 14) lateral and
ventral orbital cortex. Efferent fiber systems: 15) sympathetic postgan-
glionic neurons.
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lateral quadrant (139, 153, 544), and 9) lateral funiculus
[397; see monograph by Willis for a review (580)].

Brain nuclei consist of the following: 10) rostral ventro-
medial medulla (411, 458, 533, 534, 540); 11) nuclei reticularis
gigantocellularis (151, 347, 541, 569); 12) thalamic nuclei,
ventrobasal complex (446, 622); 13) anterior cingulate cor-
tex (29, 114, 262, 431); and 14) ventrolateral orbital area (29).

Efferent nerve fibers consist of the following:
15) sympathetic postganglionic neurons (4, 17, 236, 241,
284, 342, 432, 435, 472, 482).

VI. SPINAL MECHANISMS OF HYPERALGESIA

AND ALLODYNIA

The work summarized in the previous sections dem-
onstrates that the pathogenesis of hyperalgesia and allo-
dynia may have important spinal components. Section VIA

summarizes some of the global changes that have been
observed in association with the development of hyperal-
gesia or allodynia. The subsequent sections (sect. VI, B–G)
describe spinal mechanisms that are likely involved in the
generation or maintenance of hyperalgesia or allodynia.

A. General Changes in Spinal Cord After Induction

of Hyperalgesia and Allodynia

A large number of conditions may cause hyperalgesia
and some also dynamic mechanical allodynia as outlined
above. It is possible that each condition may trigger a
characteristic set of changes within the central nervous
system. The functional consequences of these changes
may vary from being necessary or sufficient for induction
of hyperalgesia or allodynia; others may facilitate, inhibit,
or prevent changes in pain sensitivity; and still others may
be unrelated epiphenomena. An early review on some of
these activity-dependent neuroplastic changes in spinal
dorsal horn is provided by Dubner and Ruda (118). Here,
I focus on three conditions that trigger hyperalgesia
and/or allodynia: 1) supramaximal electrical stimulation
of sensory nerve fibers. This conditioning stimulus can be
used in humans and in behaving experimental animals, in
acute preparations and in vitro. 2) Activation of transient
receptor potential vanilloid 1 channels on a subset of
C-fibers by capsaicin is a commonly used model for affer-
ent-induced secondary hyperalgesia in humans, behaving
animals, and acute preparations. 3) The chronic constric-
tion injury of the sciatic nerve is a widely used model for
peripheral neuropathic pain.

1. Changes induced in spinal dorsal horn by electrical

nerve stimulation

Electrical stimulation of sensory nerves at C-fiber
intensity causes spinal release of amino acids including

aspartate, glutamate, asparagine, serine, glycine, threo-
nine, alanine, and taurine (400). Furthermore, a number of
neuropeptides are released including substance P (266,
282, 465), galanin (85), calcitonin gene-related peptide
(464), endomorphins (102), nociceptin (576), and dynor-
phin A (199). Neurotrophic factors such as brain-derived
neurotrophic factor may be released in the spinal cord
upon electrical stimulation of sensory nerves in a frequency-
dependent manner. Release of brain-derived neurotrophic
factor requires high-frequency stimulation at C-fiber
strength (100 Hz) (282), whereas low-frequency stimula-
tion is ineffective (1 or 2 Hz) (282, 553).

Electrical nerve stimulation at C-fiber but not at A�-
fiber intensity also leads to posttranslational modification
of proteins in spinal neurons including phosphorylation of
extracellular signal-regulated kinase (212). Stimulation of
dorsal roots at C-fiber intensity with low frequencies
(0.05–10 Hz) (143) or higher frequencies [50 Hz (212) or
100 Hz (283, 595)] induces phosphorylation of extracellu-
lar receptor-activated kinase in superficial but not in deep
spinal dorsal horn [See also Ji and Suter (214) for a
review]. Activation of C-fibers by electrical stimulation
(or by capsaicin) leads to an 8- to 10-fold increase in
extracellular signal-regulated kinase phosphorylation in
superficial spinal dorsal horn in vitro (231).

After the initial study by Hunt et al. (198), a large
number of reports confirmed the transsynaptic induction
of protein products of immediate-early genes such as c-fos

in spinal neurons following sensory stimulation (582; for
review, see Coggeshall, Ref. 80). Electrical nerve stimula-
tion at C-fiber strength (1 Hz for 6–8 h) causes spinal
upregulation of c-Fos protein (291) but no observable
changes in gene expression for calcium/calmodulin-de-
pendent protein kinase II�, or glutamate decarboxylase
(291). The pattern and the intensity of c-Fos labeling in
spinal dorsal horn depends on the duration of electrical
nerve stimulation; brief stimuli (seconds) cause transient
labeling in superficial laminae only while longer lasting
stimulation (hours) also leads to labeling in deeper layers
(50). Electrical stimulation of sciatic nerve at A�/C but not
at A-fiber intensity leads to expression of transcription
factors c-Jun, Jun B, Fos B, and Krox-24 mainly in super-
ficial layers of spinal dorsal horn and of c-Fos and Jun D
throughout spinal dorsal horn (179). Expression of c-Fos
in dorsal horn neurons is used as an activity marker but
provides probably not sufficient evidence for neuronal
plasticity and long-term changes in nociception (456). The
functional role of enhanced expression of immediate-
early genes in neurons of the spinal cord is still largely
unknown.

2. Changes induced by capsaicin

Activation of transient receptor potential vanilloid 1
receptor channels on fine primary afferent nerve fibers by
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subcutaneous injections of capsaicin causes a large num-
ber of global changes within spinal dorsal horn. This
includes the release of neurotransmitters and modulators
such as glutamate (529), substance P (49, 296, 600), cal-
citonin gene-related peptide (107, 377), somatostatin (258), and
nitric oxide (593).

Capsaicin injections trigger posttranslational changes in
spinal dorsal horn cells such as phosphorylation of AMPA
receptor subunit GluR1 (374), as well as phosphorylation of
NMDA receptor 1 through protein kinase C and protein
kinase A (630) in spinal dorsal horn neurons, including
those with a projection to the thalamus (631).

Furthermore, capsaicin injections significantly in-
crease the phosphorylation levels of enzymes and tran-
scription factors such as cAMP response element-binding
protein (594) and calcium/calmodulin-dependent protein
kinase II (126) in the ipsilateral side of the spinal cord.
Phosphorylation of extracellular signal-regulated kinase
in the superficial spinal dorsal horn in vitro increases 8- to
10-fold following capsaicin injections. The extracellular
signal-regulated kinase induction is reduced by blockade
of NMDA, AMPA/kainate, group I metabotropic glutamate
receptor, neurokinin-1, and tyrosine receptor kinase re-
ceptors and by inhibitors of protein kinase A or protein
kinase C (231).

c-Fos protein is detected in neurons of ipsilateral
spinal dorsal horn after subcutaneous injections of cap-
saicin (590), including spinothalamic tract neurons and
postsynaptic dorsal column neurons (398).

Perineuronal injections of capsaicin near the tibial
nerve reduce the number of cells in spinal dorsal horn
with GABA immunoreactivity (571).

Intracolonic installation of capsaicin causes referred
hyperalgesia in mice and recruitment of GluR1 (but not
GluR2/3) AMPA receptor subunits to the plasma mem-
brane fraction of spinal cells within 10 min. At 180 min,
the increase is 3.7-fold (144).

3. Changes induced by chronic constriction injury

of sciatic nerve

In the chronic constriction injury model of rats, glu-
tamate and aspartate contents are increased on the ipsi-
lateral side of the dorsal horn to nerve ligation on days 4,
7, and 14 after nerve injury (229). Likewise, in spinal
dorsal horn of hyperalgesic rats with a sciatic nerve liga-
tion (473), extracellular levels of glutamate and aspartate
are more than doubled as revealed by microdialysis (94).
Furthermore, chronic constriction injury leads to en-
hanced levels of 5-hydroxytryptamine (serotonin) and
norepinephrine bilaterally in spinal cord (463), as well as
enhanced content of neuropeptides such as neuropeptide
Y (86) and galanin (85). In contrast, substance P immu-
noreactivity is decreased in ipsilateral spinal dorsal horn
60 days after chronic constriction injury. In the contralat-

eral dorsal horn, calcitonin gene-related peptide and sub-
stance P immunoreactivities also decrease 60 days after
chronic constriction injury (225). Neuropeptide changes
may persist in spinal cord despite resolving mechanical
hyperalgesia 100–120 days after chronic constriction in-
jury. Substance P and galanin immunoreactivities are still
decreased by �30% ipsilaterally in laminae I and II of the
dorsal horn compared with sham-operated animals, while
calcitonin gene-related peptide and neuropeptide Y con-
tents in laminae I and II are no longer different from
controls by this time (371). A number of proteins are
either up- or downregulated after chronic constriction
injury or other models of neuropathic pain. A systematic
review on the proteomics in neuropathic pain research is
provided by Niederberger and Geisslinger (384).

As soon as 3 days after a chronic constriction injury
of the sciatic nerve, the number of GABA- and glutamate
decarboxylase-immunoreactive cells decrease bilaterally
to the nerve injury. At 1 wk after chronic constriction
injury, the number of GABA-immunoreactive cells contin-
ues to decline bilaterally, returning to near normal num-
bers on the side contralateral to the nerve injury by 8 wk
after the nerve injury. The number of glutamate decarbox-
ylase immunoreactive cells begins to increase bilaterally
to the nerve injury at 1 wk after chronic constriction
injury and continues to increase significantly in numbers
over normal values by 8 wk after the nerve injury (121). A
quantitative stereological analysis of the proportions of
neurons in laminae I, II, and III of the rat dorsal horn that
show GABA and/or glycine immunoreactivity 2 wk after
chronic constriction injury does, however, not reveal any
loss of inhibitory interneurons (413), suggesting that
GABA synthesis is downregulated under these conditions
and that not a loss of GABAergic neurons accounts for
reduced GABA immunoreactivity (see also sect. VID1AI).

Nerve injury may also alter expression or binding
properties of cell surface receptors. �-Opioid receptor
binding is increased 2–5 days postinjury, bilaterally to the
injury in laminae V and X but only ipsilaterally in laminae
I-II. Binding returns to control levels within 10 days.
�-Opioid receptor binding declines gradually over 2–10
days postinjury. �-Opioid receptor binding displays an
increase in ipsilateral laminae I–II and in contralateral
lamina X but no change on either side in lamina V, fol-
lowed by a rapid decrease in �-opioid receptor binding in
all three areas on both sides of the spinal cord by day 5
postinjury (499).

Substance P binding significantly increases ipsilat-
eral to the chronic constriction injury in laminae I/II at
5–20 days after injury and in lamina V 5 days after injury
(1), while calcitonin gene-related peptide binding remains
unchanged (149).

Fractalkine receptor CX3CR1, which is expressed by
microglia in the basal state, is upregulated in a regionally
specific manner 10 days after chronic constriction injury,
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while immunoreactivity and mRNA levels of its ligand
remain unchanged in dorsal horn (543).

Synaptic proteins may also be altered in spinal dorsal
horn of rats with a chronic constriction injury of sciatic
nerve. The period of mechanical and thermal hyperalgesia
parallels the duration of enhanced expression of scaffold-
ing proteins Homer and Shank in the postsynaptic density
in ipsilateral spinal dorsal horn (346). The distribution
and content of synaptophysin are altered following
chronic constriction injury as evaluated by immunohisto-
chemistry, Western blotting, and densitometry. Synapto-
physin is increased in the ipsilateral dorsal horn with a
peak level on day 14 and then returns to baseline on day

21 post-chronic constriction injury. Interestingly, synap-
tophysin levels correlate temporally with thermal but not
with mechanical hyperalgesia (72).

Levels and activation of enzymes in spinal cells are
also altered in the course of a chronic constriction injury
of sciatic nerve. Three to 14 days after chronic constric-
tion injury of sciatic nerve, total calcium/calmodulin-de-
pendent protein kinase II immunoreactivity is enhanced
in spinal cord, and this is preceded by an increase in
phosphorylated calcium/calmodulin-dependent protein
kinase II immunoreactivity beginning on day 1 (96). Three
and 10 days after chronic constriction injury, membrane-
bound protein kinase C is increased bilaterally in the
lumbar spinal cord (L1–L5) laminae I–IV and V–VI (319).
Eight days after chronic constriction injury, protein ki-
nase C-� immunoreactivity is increased bilaterally in the
spinal cord dorsal horn (322).

The number of phosphorylated p38-immunoreactive
microglia increases in the laminae I–IV and IX of the
spinal cord ipsilateral to a chronic constriction injury
(242). Tactile hyperalgesia and activation of microglia
may, however, not be closely time locked after chronic
constriction injury. When scoring glial responses subjec-
tively by changes in cell morphology, cell density, and
intensity of immunoreactivity with specific activation
markers (OX-42 and anti-glial fibrillary acidic protein for
microglia and astrocytes, respectively), microglial re-
sponses are not pronounced in the chronic constriction
injury lesioned rats. Spinal astrocytic rather than micro-
glial responses appear to correlate more closely with pain
behaviors in rats with a chronic constriction injury (81).

Synaptosomal contents of glutamate and aspartate
are enhanced by 45% bilaterally in spinal cord 12 days
after unilateral chronic constriction injury to sciatic nerve
(492).

The number of apoptotic cells marked by the TUNEL
technique plus Hoechst double labeling increases in the
ipsilateral dorsal horn of the spinal cord 8 and 14 days
following chronic constriction injury compared with the
contralateral side and to naive and sham-treated animals
(573). Following chronic constriction injury, morphologi-
cal changes in the ipsilateral L4–L5 lamina II include cell

loss and increased TUNEL-positive profiles and reactive
gliosis. However, the total number of neurons is appar-
ently unchanged 2 wk after chronic constriction injury
when using the quantitative stereological optical dissec-
tor method and NeuN immunostaining (412).

Markers for cell activity also change. The amplitude
and frequency of spontaneous and miniature excitatory
postsynaptic currents increase in superficial dorsal horn
neurons of rats with a chronic constriction injury of sci-
atic nerve for 13–25 days (28). Sciatic nerve ligation pro-
duces a bilateral increase in spinal cord 2-[14C]deoxyglu-
cose metabolic activity in four sampling regions (laminae
I–IV, V–VI, VII, and VIII–IX) of lumbar segments com-
pared with sham-operated rats (320). The expression of
c-Fos protein in spinal cord is also upregulated after
chronic constriction injury (224) and may have a biphasic
time course (see, however, Ref. 62). The highest number
of c-Fos-positive neurons occurs during the first week
after chronic constriction injury, followed by a decline at
7 and 14 days and reappearance at day 28 following injury.
This biphasic time course does, however, not resemble
the monophasic time course of tactile hyperalgesia in the
chronic constriction injury model (211). In another study,
Fos-positive cells were found bilaterally throughout lam-
inae III–X at all time points examined up to 55 days after
surgery in both chronic constriction injury and sham-
operated animals (372). The number of c-Fos-positive
cells in the ipsilateral spinal cord was positively corre-
lated with the degree of hyperalgesia in one study (195).

Potential spinal mechanisms causing enhanced neu-
ronal responsiveness are shown in Figure 3 and include
direct facilitation along the chain of excitation (Fig. 3,
A–C) or alteration in physiological modulation of spinal
nociception, i.e., less than normal inhibition (Fig. 3, D, F,
and J), conversion from inhibition to excitation (Fig. 3, E

and G), or stronger than normal excitation (Fig. 3, H–J).
Generation of epileptiform activity, burstlike discharges,
and synchronous discharges could also amplify nociception
(Fig. 3K). If pain should be caused by a unique pattern of
discharges of individual neurons (pattern theory) and/or by
a characteristic pattern of active versus silent neurons (pop-
ulation coding), any of the above cellular mechanisms could
contribute to altered pain perception.

B. Synaptic LTP

1. Definitions

LTP is a much studied cellular model of synaptic
plasticity. It is generally defined as the long-lasting but not
necessarily irreversible increase in synaptic strength (42).
At least two different stages of LTP can be distinguished
depending upon its duration and the signal transduction
pathways involved. Early-phase LTP is independent of de
novo protein synthesis and lasts for up to 3 h. Late-phase
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LTP involves protein synthesis and lasts longer than 3 h,
up to the life span of an animal. Short-term potentiation of
synaptic strength lasts less than half an hour. Synaptic
strength is the magnitude of the postsynaptic response
(i.e., the postsynaptic potential or the postsynaptic current,
but not action potential firing, see below) in response to a
presynaptic action potential. LTP can be expressed pre-
and/or postsynaptically, i.e., synaptic strength can increase if
the release of neurotransmitter(s) is enhanced and/or if the
postsynaptic effects of the neurotransmitter(s) become
stronger (295). LTP at synapses in hippocampus is the prime
model for learning and memory formation (42). Recent stud-
ies have shown that LTP can also be induced in pain path-
ways and may contribute to hyperalgesia caused by inflam-
mation, trauma, or neuropathy (453). This section deals with
the latter form of LTP.

2. How to measure LTP properly

LTP is measured as an increase in monosynaptically
evoked postsynaptic currents or potentials in response to
a single presynaptic action potential. LTP is often studied
in in vitro preparations which allow reliable recordings of
synaptic strength. Whole cell patch-clamp recording is
now the most often used technique. It enables some
control over the composition of the intracellular fluid
of the postsynaptic neurons, which may be advanta-
geous to study postsynaptic mechanisms of LTP. If,
however, a diffusible mediator is involved and dialysis
of the postsynaptic neuron has to be avoided, perfo-
rated patch-clamp recordings or intracellular record-
ings with sharp electrodes can be used. To evaluate
LTP at the first synapses in nociceptive pathways,
transverse slices with long dorsal roots attached can be
prepared from lumbar spinal cord of rats or mice to
study monosynaptic, A�-fiber or C-fiber evoked excita-
tory postsynaptic potentials or currents in identified
dorsal horn neurons (202, 425).

Some aspects of LTP can only be studied in the entire
animal with primary afferent nerve fibers and descending
pathways from the brain intact. In vivo C-fiber-evoked
field potentials can be measured in superficial spinal dor-
sal horn, e.g., in response to high-intensity electrical stim-
ulation of the sciatic nerve for up to 24 h (300). These
extracellularly recorded field potentials reflect summa-

tion of postsynaptic, mainly monosynaptically evoked
currents but not action potential firing (300, 469).

Monitoring presynaptic activity at synapses of pri-
mary afferent nerve fibers is technically quite demanding.
In an attempt to monitor presynaptic activity in primary
afferents, optical recording techniques have been utilized.
Some voltage-sensitive dyes can be anterogradely trans-
ported in primary afferents to the central terminals mainly
in lamina I (203) and may serve as an indicator for pre-
synaptic electrical activity but not for transmitter release.

LTP cannot be directly investigated by recording ac-
tion potential discharges of postsynaptic neurons, as ac-
tion potential firing not only depends on synaptic strength
but also on membrane excitability and the balance be-
tween excitatory and inhibitory input to the neuron. For
the same reasons, polysynaptically evoked responses can
generally not be used to study synaptic strength and
changes thereof.

3. Stimuli that induce LTP in pain pathways

A) HIGH-FREQUENCY ELECTRICAL NERVE STIMULATION. The
most frequently used form of conditioning stimulation to
induce LTP at synapses in the brain consists of high-
frequency electrical stimulation (�100 Hz) of an input
pathway. Likewise, LTP can be induced at spinal synapses
of small-diameter primary afferents by conditioning high-
intensity, high-frequency burstlike stimulation (typically
100 Hz bursts given several times for 1 s at C-fiber
strength) both in vitro and in vivo. In spinal cord slice
preparations, both A�-fiber (425) and C-fiber (202, 204)
evoked responses are potentiated by high-frequency stim-
ulation when postsynaptic neurons are mildly depolarized
to �70 to �50 mV. The same high-frequency stimulation
induces, however, long-term depression (LTD) of A�-fi-
ber-evoked responses if cells are hyperpolarized to �85
mV, suggesting that the polarity of synaptic plasticity is
voltage dependent (425).

Neurons in spinal cord lamina I which express the
neurokinin 1 receptor play a pivotal role for hyperalgesia
in behaving animals (318, 383). Most of these neurons
send a projection to supraspinal areas. Interestingly, high-
frequency stimulation induces LTP selectively at C-fiber
synapses with lamina I neurons that express the neuroki-
nin 1 receptor and send a projection to the parabrachial

FIG. 3. Schematically illustrated are spinal mechanisms leading to hyperalgesia or allodynia. On the left (“site of action”), a nociceptive spinal
dorsal horn projection neuron (upward arrow) is shown that receives input from a primary afferent nociceptive nerve fiber (as shown in A, G, and
I). This afferent input is omitted for reasons of simplicity only in the remaing parts of the figure. The nociceptive projection neuron also receives
inhibitory (GABAergic and/or glycinergic) input (small, black neuron in D, E, and F). The inhibitory neuron has excitatory drive from a spinal
interneuron (F) and/or from primary afferent nerve fibers (not shown). Spinal inhibitory interneurons may mediate presynaptic inhibition at the
terminals of primary afferent nerve fibers (G) as well as pre- and postsynaptic inhibition of spinal excitatory interneurons (J). Nocicpetive spinal
dorsal horn projection neurons are modulated further by long, descending facilitatory and inhibitory pathways (H) and by complex network activity
of spinal interneurons (K). The potential changes in electrophysiological properties and responses under pathological conditions (“Modified”)
compared with controls (“Normal”) are shown in the middle. On the right (“Mechanisms”), a brief description of the effects and the relevant sections
in this review are given for each of the mechanisms described.
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area (202), and vice versa, high-frequency stimulation
fails to induce LTP at synapses with neurons which ex-
press the neurokinin 1 receptor and send a projection to
the periaqueductal gray or at synapses with neurons that
do not express the neurokinin 1 receptor and which have
no identified supraspinal projection (202, 204).

High-frequency stimulation at C-fiber intensity of sci-
atic nerve fiber afferents induces LTP of C-fiber, but not
A�-fiber evoked field potentials in superficial spinal dor-
sal horn of adult, deeply anesthetized rats (299, 300, 307).
In contrast, conditioning high-frequency stimulation at
A-fiber intensity fails to induce LTP of either A- or C-fiber
evoked field potentials in intact animals. In spinalized
animals, conditioning high-frequency stimulation at A�-
fiber intensity induces, however, LTP of C-fiber evoked
field potentials (298). Likewise, in rats with a spinal nerve
ligation but not in control animals, high-frequency stimu-
lation at a low intensity (10 V, 0.5-ms pulses) induces LTP
of C-fiber evoked field potentials, whereas high-intensity
high-frequency stimulation (30 V, 0.5-ms pulses) is effec-
tive in both control and in neuropathic animals (596). This
suggests that the threshold for inducing LTP is lowered
under various neuropathic conditions.

B) LOW-FREQUENCY ELECTRICAL NERVE STIMULATION. For
most of the C-fiber afferents it is not typical to discharge
at rates as high as 100 imp/s. Some C-fibers may, however,
discharge at these high rates but only for short periods of
time, e.g., at the beginning of a noxious mechanical stim-
ulus (165). Many C-fibers discharge at considerably lower
rates, �1–10 imp/s, e.g., in response to an inflammation or
an injury (422). Conditioning stimulation within this lower
frequency band is successfully used to induce LTP at
C-fiber synapses. In a spinal cord-dorsal root slice prepa-
ration, conditioning electrical low-frequency stimulation
(2 Hz for 2–3 min, C-fiber strength) of dorsal root affer-
ents induces LTP selectively at C-fiber synapses with
lamina I neurons that express the neurokinin 1 receptor
and project to the periaqueductal gray (204). C-fiber syn-
apses with lamina I neurons which express the neurokinin
1 receptor and project to the parabrachial area or with no
identified supraspinal projection are, in contrast, not po-
tentiated by low-frequency stimulation (204). Thus the
pattern and the frequency of discharges in C-fibers deter-
mine which synapses at the origin of different ascending
pain pathways are potentiated.

In spinal cord slices from neonatal rats, field poten-
tials evoked by electrical stimulation in the tract of Lis-
sauer are potentiated by repetitive burstlike stimulation at
10 Hz (514). Some authors could induce LTP at synapses
in deep spinal dorsal horn in slices from young (3–6 day
old) but not older (9–16 day old) rats (147) in contrast to
a recent study where a robust LTP was induced in super-
ficial dorsal horn by low-frequency stimulation at C-fiber
synapses in more mature animals (21- to 28-day-old rats)
(204).

In deeply anesthetized adult rats with their spinal
cords left intact, low-frequency stimulation (at 2 Hz for
2–3 min) of sciatic nerve fibers at C-fiber intensity but not
at A�-fiber intensity also triggers LTP of C-fiber evoked
potentials (204).

Thus high-frequency stimulation and low-frequency
stimulation may have fundamentally different effects on
LTP induction at different C-fiber synapses. This finding is
in line with previous reports also illustrating that the
frequency of afferent barrage in C-fibers may have quali-
tatively different effects in spinal cord. For example,
brain-derived neurotrophic factor is released from pri-
mary afferents in spinal cord slices in an activity-depen-
dent manner by high-frequency stimulation at 100 Hz but
not by 1-Hz low-frequency stimulation of primary afferent
nerve fibers, while substance P is also released by low-
frequency stimulation (282).

C) NATURAL NOXIOUS STIMULATION INDUCES LTP. At synapses
in the brain, LTP induction requires synchronous, high-
frequency presynaptic activity or pairing of low-level pre-
synaptic activity with strong postsynaptic depolarization.
At least some of the C-fiber synapses are apparently
unique in that LTP can be induced by low-frequency stim-
ulation and by natural, low- or high-frequency, asynchro-
nous and irregular discharge patterns in sensory nerve
fibers. In animals with spinal cord and descending path-
ways intact, intraplantar, subcutaneous injections of cap-
saicin (100 �l, 1%) or Formalin (100 �l, 5%) induce slowly
rising LTP (204).

Some forms of low-level afferent input can induce
LTP only if descending, presumably inhibitory pathways
are interrupted or weakened. Noxious radiant heating of
the skin at a hindpaw induces LTP in spinalized animals
but not in animals with spinal cord intact (455). Likewise,
repetitive, noxious squeezing of the skin or the sciatic
nerve induces LTP of C-fiber evoked field potentials only
in spinalized rats (455). These findings indicate that en-
dogenous antinociceptive systems not only raise thresh-
olds for nociception but also those for the induction of
LTP.

D) PHARMACOLOGICAL INDUCTION OF LTP. At C-fiber syn-
apses LTP can also be induced in the absence of any
presynaptic activity. Spinal application of a dopamine
1/dopamine 5 receptor agonist (SKF 38393) in vivo in-
duces a slowly developing LTP of C-fiber-evoked field
potentials which lasts for at least 10 h and which is
blocked by a dopamine 1/dopamine 5 antagonist (SCH
23390) (602). In spinalized, deeply anesthetized, adult
rats, superfusions of spinal cord segments with NMDA,
substance P, or neurokinin A are all sufficient to induce
LTP of C-fiber evoked field potentials (297). With spinal
cord and descending (inhibitory) pathways intact, spinal
applications of NMDA, substance P, or neurokinin A fail,
however, to induce LTP of C-fiber evoked field potentials
(297). When applied spinally to rats, tumor necrosis fac-
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tor-� may also potentiate synaptic strength in C-fibers
(301). In vitro, bath application of serotonin (10–50 �M)
may initially depress and after wash-out potentiate re-
sponses for more than 30 min of some neurons in laminae
I-III of spinal dorsal horn slices evoked by stimulating
near the dorsolateral margin of the spinal cord (184).

E) LTP OF A-FIBER EVOKED RESPONSES. A-fiber evoked spi-
nal field potentials are depressed by conditioning 50-Hz
stimulation of sciatic nerve fibers. After systemic applica-
tion of the GABAA receptor antagonist bicuculline, the
same conditioning stimulus now produces LTP rather
than LTD (345). Similarly, 50-Hz conditioning stimulation
produces short-lasting potentiation followed by LTD in
control animals but LTP in animals with a chronic con-
striction injury of sciatic nerve (344). Topical application
of muscimol, a GABAA receptor agonist, to spinal cord
prevents tetanus-induced LTP of A-fiber evoked field po-
tentials in animals with a chronic constriction injury
(343). This again suggests that the polarity of synaptic
plasticity is context sensitive and not solely dominated by
the type of afferent input.

4. Signal transduction pathways of LTP

at C-fiber synapses

In principle, LTP could be induced and/or expressed
by presynaptic or by postsynaptic mechanisms or by any
combination thereof (Fig. 3A). At present, there is clear
evidence for a postsynaptic, Ca2�-dependent form of LTP
induction in spinal cord lamina I neurons (202, 204).
Indirect evidence suggests that in addition excitability of
presynaptic terminal of primary afferents may be en-
hanced after LTP-inducing stimuli (203) and that synap-
tosomal level of aspartate and glutamate, but not that of
glycine or GABA, is elevated in rats with a chronic con-
striction injury of the sciatic nerve (492). These findings
are compatible with a presynaptic contribution to synap-
tic plasticity in spinal dorsal horn.

Induction of LTP at C-fiber synapses requires coacti-
vation of neurokinin 1 and neurokinin 2 receptors (300),
opening of ionotropic glutamate receptors of the NMDA
type (202, 204, 299), opening of T-type voltage-gated cal-
cium channels (202, 204), and activation of group I but not
group II or III metabotropic glutamate receptors (23).
Activation of neurokinin 1 receptors by substance P may
directly enhance single NMDA channel opening (292) and
NMDA receptor-mediated currents in lamina I neurons
(202), and all this may lead to a substantial rise in postsyn-
aptic [Ca2�]i. It is presently unknown if Ca2� influx
through Ca2�-permeable AMPA receptors is required for
LTP induction in pain pathways. Some indirect evidence
suggests, however, that this might be the case (172, 612).

In any case, a rise in postsynaptic [Ca2�]i is essential
for LTP induction, and the magnitude in [Ca2�]i rise is
linearly correlated with the magnitude of LTP in vitro

(202). Recent data demonstrate that LTP-inducing stimuli
cause substantial rise in [Ca2�]i in lamina I neurons not
only in slice preparations, but also in intact animals (204).
Not surprisingly therefore, signal transduction involves
Ca2�-dependent pathways including activation of protein
kinase C, calcium/calmodulin-dependent protein kinase
II, protein kinase A, phospholipase C, inositol trisphos-
phate receptors, mitogen-activated protein kinase, nitric
oxide synthase, and ephrin-EphB2 receptor tyrosine ki-
nase signaling (202, 204, 493, 595, 601, 621).

When assessed with voltage-sensitive dyes, the pre-
synaptic facilitation of electrical activity in primary affer-
ents after LTP-inducing stimuli is partially sensitive to
inducible nitric oxide synthase inhibitor (AMT), a blocker
of glial cell metabolisms (monofluoroacetic acid, MFA),
and a metabotropic glutamate receptor group I antagonist
(LY367385) (203).

Inhibition of protein synthesis in spinal cord by either
cycloheximide or anisomycin selectively inhibits the
maintenance of the late phase of spinal LTP but does not
affect either LTP induction or baseline responses of C-
fiber evoked field potentials (190).

Potential targets of these signaling pathways are syn-
aptic proteins, including glutamate receptors of the AMPA
subtype. And, indeed, already 5 min after capsaicin injec-
tions that induce LTP (204), the AMPA receptor subunit
GluR1 (at Ser-831 and Ser-845) in spinal dorsal horn be-
comes phosphorylated for at least 60 min (128) via acti-
vation of protein kinases A and C (127) and via calcium/
calmodulin-dependent protein kinase II (126). Capsaicin
injections also trigger the translocation of GluR1-contain-
ing AMPA receptors to the postsynaptic membrane of
nonpeptidergic nociceptive primary afferent synapses
(272). Phosphorylation of the GluR1 subunit is an essen-
tial step of LTP at glutamatergic synapses (44, 277).

Importantly, the very same signal transduction path-
ways are required for full expression of hyperalgesia in
animal models of inflammatory and neuropathic pain
(335, 407, 452, 578).

5. Prevention of LTP in pain pathways

LTP induction can be prevented by blockade of any
of the above-mentioned essential elements of signal trans-
duction for LTP. In mature rats, deep (surgical) level of
anesthesia with either urethane, isoflurane, or sevoflu-
rane is, however, insufficient to preempt LTP induction
of C-fiber evoked field potentials (36). In contrast, the
noble gas xenon, which has NMDA receptor blocking
and anesthetic properties, also prevents induction of
LTP at C-fiber synapses in intact rats (37). LTP can also
be prevented by low-dose intravenous infusion of
�-opioid receptor agonist fentanyl (36). Similarly, LTP
of spinal field potentials elicited by stimulation in the
tract of Lissauer in spinal cord slices is blocked by
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[D-Ala2,N-MePhe4,Gly-ol]-enkephalin (DAMGO), a more
specific agonist at these receptors (514). Activation of
spinal �2-adrenoreceptors by clonidine (150) or spinal
application of the benzodiazepine diazepam (191) also
prevents LTP induction in vivo.

Functional blockade of glial cells by intrathecal ad-
ministration of fluorocitrate changes the polarity of high-
frequency stimulation induced synaptic plasticity. When
high-frequency stimulation is given 1 h but not 3 h after
fluorocitrate, LTD but no LTP of C-fiber evoked field
potentials is induced (307).

6. Reversal of LTP in pain pathways

LTP of C-fiber evoked field potentials can be reversed
by brief, high-frequency conditioning electrical stimula-
tion of sciatic nerve fibers at A�-fiber intensity (298).
Reversal of LTP by A�-fiber stimulation is time dependent
and effective only when applied 15 or 60 min but not 3 h
after LTP induction (616).

Spinal application of either neurokinin 1 or neuroki-
nin 2 receptor antagonists 1–3 h after high-frequency stim-
ulation, i.e., after LTP is established, does not affect main-
tenance of LTP (300), suggesting that activation of these
receptors, which are required for the induction of LTP,
are not essential for its maintenance.

7. Functional role of LTP in pain pathways

Modulation of synaptic strength is a powerful mech-
anism to control signal flow in selected pathways. A typ-
ical consequence of LTP at excitatory synapses would be
an increase in action potential firing of the same and
perhaps also of downstream neurons in response to a
given stimulus. And indeed, LTP-inducing conditioning
stimuli have been found to facilitate action potential firing
of multireceptive neurons in deep dorsal horn (3, 174, 403,
445, 546). This is likely due to LTP at the first synapse in
the nociceptive pathway, but other mechanisms of facili-
tation should not be excluded. Action potential firing
would also be enhanced if membrane excitability is in-
creased, i.e., the thresholds for action potential firing are
lowered, and this has been shown for nociceptive neurons
in deep spinal dorsal horn. Furthermore, discharges in-
crease also if inhibition is less effective or if inhibition is
even reversed and becomes excitatory, e.g., due to a
reversal of the anion gradient in the postsynaptic neuron
(88, 89).

High-frequency stimulation of sciatic nerve fibers
which induces LTP at synapses of C-fibers in spinal cord
has behavioral consequences in rats and causes thermal
hyperalgesia at the ipsilateral hindpaw for 6 days (621).
This suggests that LTP at C-fiber synapses has an impact
on nociceptive behavior of laboratory animals and hu-
mans (see next paragraph).

8. Perceptual correlates of LTP in pain pathways

in human subjects

An indispensable proof for any proposed mechanism
of hyperalgesia is an appropriate correlate in humans.
And, indeed, conditioning high-frequency stimulation of
cutaneous peptidergic afferents in humans causes in-
creased pain perception in response to electrical test
stimuli applied through the same stimulation electrode
(246). Noxious stimulation with punctate mechanical
probes in skin adjacent to the high-frequency stimulation
conditioning skin site uncovers a marked (2- to 3-fold)
increase in pain sensitivity, i.e., secondary hyperalgesia
(246). Touching the skin around the conditioning stimu-
lation electrode with a soft cotton wisp evokes pain only
after high-frequency stimulation. Thus high-frequency
stimulation also induces secondary mechanical dynamic
allodynia, possibly involving heterosynaptic mechanisms
in humans (248). Hyperalgesia at the conditioned site but
not secondary hyperalgesia at adjacent skin areas is pre-
vented by pretreatment with ketamine (247), a clinically
used substance which, among other effects, also blocks
NMDA receptors.

Interestingly, all thermal modalities comprising cold
and warm detection thresholds, cold and heat pain thresh-
olds, as well as pain summation (perceptual wind-up)
remain unaltered after conditioning high-frequency stim-
ulation of peptidergic skin nerve fibers (268).

When verbal pain descriptors are used to evaluate
pain in addition to its perceived intensity after high-fre-
quency stimulation, a significant long-term increase in
scores for sensory but not for affective descriptors of pain
is detected (166). Within the sensory descriptors, those
describing superficial pain, those for heat pain, and those for
sharp mechanical pain are all potentiated. The authors con-
clude that brief painful stimuli rarely have a strong affective
component and that perceived pain after high-frequency
stimulation exhibits predominantly a potentiation of the C-
fiber-mediated percept hot and burning (166).

In human subjects, conditioning low-frequency stim-
ulation causes also an increased pain sensitivity in the
area around the low-frequency stimulation conditioned
skin site but a depression of pain evoked by stimulation
through the same electrode (246).

LTP at synapses between primary afferent C-fibers
and a group of nociceptive neurons in spinal cord lamina
I which express the neurokinin 1 receptor for substance P
is a potential mechanism underlying some forms of pain
amplification in behaving animals and perhaps human
subjects. Both LTP and hyperalgesia involve the same
essential elements, i.e., primary afferent peptidergic C-
fibers and lamina I neurons which express the neurokinin
1 receptor. Indirect evidence suggests that ongoing activ-
ity in primary afferent C-fibers is essential not only for
evoked, but also for spontaneous neuropathic and inflam-
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matory pain (110). Furthermore, induction protocols,
pharmacological profile, and signal transduction path-
ways are virtually identical (453).

C. Intrinsic Plasticity

Active and passive membrane properties determine
the input-output relationship of all neurons. Thus changes
of electrical membrane properties constitute another
powerful means to modulate signal transmission in neu-
ronal networks. A single neuron may integrate the infor-
mation from 104 synapses, and the resultant output is
conveyed by action potentials that are typically generated
at the axon hillock and nearby somatic membrane.
Changes in membrane excitability of neurons will globally
or locally modulate the throughput from synapses imping-
ing on the dendrites and the soma of the postsynaptic
neuron. In analogy of synaptic plasticity, long-lasting
changes in membrane excitability are called “intrinsic
plasticity,” which adds to the computational power of
neurons. Intrinsic plasticity may include but is not limited
to postsynaptic changes in thresholds for action potential
firing (Fig. 3B), changes in discharge patterns and accom-
modation of firing (Fig. 3C), and presynaptic changes in
action potential shape (width and height). Intrinsic plas-
ticity may be global or local, e.g., restricted to some
dendrites, axonal branches, or presynaptic terminals. In
striking contrast to the comprehensive literature on the
modulation of membrane properties of primary afferent
nerve fibers, little is known about intrinsic plasticity of
nociceptive neurons in the central nervous system and
their role for hyperalgesia and allodynia.

Spinal dorsal horn neurons may have quite distinct
membrane and discharge properties when grouped by
morphology (159, 289, 418), supraspinal projection (193,
441), lamina location of their cell bodies (442, 506), type
of afferent input in vivo (572) and in vitro (304), transmit-
ter content (116, 176, 217, 466), or developmental stage
(181, 450). The ionic basis for some of the discharge and
membrane properties of spinal dorsal horn neurons has
been explored (337, 338, 441, 448, 449, 583).

1. Voltage-dependent sodium channels

Dissociated lumbar spinal dorsal horn neurons show
the characteristic fast-activating and fast-inactivating so-
dium currents. Spinal cord contusion injury leads to a
shift of the steady-state activation and inactivation of the
sodium current towards more depolarized potentials. The
increased persistent sodium current and ramp current is
consistent with an upregulation of voltage-gated sodium
channels of the Nav1.3 subtype within dorsal horn neu-
rons that has been observed after spinal cord contusion
injury (Fig. 3C) (163, 265). Likewise, several days after a
chronic constriction injury of the sciatic nerve, i.e., at a

time point when hyperalgesia is fully expressed, Nav1.3
channels are upregulated in dorsal horn nociceptive neu-
rons. Extracellular recordings reveal enhanced respon-
siveness of spinal dorsal horn neurons to natural sensory
stimuli (164). In another study, chronic constriction injury
did not affect resting membrane potential, rheobase, or
input resistance of neurons recorded in superficial spinal
dorsal horn in slices (28). Neurons in spinal cord laminae
III–VI, i.e., in deep dorsal horn, express, however, intrin-
sic plasticity. In these neurons, associative spike pairing
stimulation induces a long-lasting increase in membrane
excitability as assessed by lowering the threshold for
action potential firing and an increase in the number of
action potential firing in response to current injection or
synaptic stimulation. Enhanced excitability depends on
activation of NMDA receptors and a rise in postsynaptic
[Ca2�]i (238).

2. Voltage-dependent potassium currents

Activation of either protein kinase A or protein ki-
nase C reduces transient outward (A-type) potassium cur-
rents (188) and strongly enhances membrane excitability
of dorsal horn neurons in cultured neurons from superfi-
cial spinal dorsal horn of mice (Fig. 3C), possibly via
activation of extracellular signal-regulated kinase (187).
Membrane excitability of spinal dorsal horn neurons is
dampened by activation of Kv4.2 channels. The activation
of the extracellular signal-regulated kinase pathways
leads to hyperexcitability of spinal dorsal horn neurons in
normal mice but not in Kv4.2 knock-out mice. These
knock-out mice also show reduced hyperalgesia in the
second phase of the Formalin test and after carrageenan
injections into a paw (186).

3. Plateau potentials

Plateau potentials are intrinsic mechanisms for in-
put-output amplification. The resulting intense firing and
prolonged afterdischarges in response to nociceptive
stimulation of neurons in layer V in a spinal cord slice
preparation depend on nonlinear intrinsic membrane
properties (365). Plateau potentials are rarely found un-
der control conditions in spinal dorsal horn neurons
in vitro (�10% of lamina V neurons) (105) or in vivo [4/33
neurons (215)]. Pharmacological activation of group I
metabotropic glutamate receptors (by 1S,3R-ACPD) con-
verts tonic firing neurons into plateau firing neurons (46%
of lamina V neurons) (Fig. 3C). In contrast, activation of
GABAB receptors inhibits plateau responses (444) and
converts plateau firing back to tonic firing (105). The
antagonistic actions of group I metabotropic glutamate
receptors versus GABAB receptors is mediated by in-
wardly rectifying potassium channels (Kir3) (105). Simul-
taneous activation of metabotropic glutamate receptors
and blockade of GABAB receptors induces rhythmic fir-
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ing. Switching the discharge mode from tonic to plateau
potentials amplifies and improves faithful transmission,
whereas rhythmic bursting results in poor transmission
capabilities (105). In addition to a role of GABAB recep-
tors, GABAA receptors also inhibit plateau potentials, as
bicuculline (50 �M) may facilitate plateau responses
(444). Inhibition of plateau properties is also observed in
the presence of tetrodotoxin, suggesting a direct action
on the neuron under study.

Induction of a unilateral peripheral inflammation with
complete Freund’s adjuvant leads to hyperalgesia, but the
principal passive and active membrane properties and the
firing patterns of ipsilateral spinal lamina I neurons are not
different in transverse spinal cord slices taken from control
rats or rats with an inflammation at a hindpaw (370).

Chronic constriction injury of one sciatic nerve leads to
tactile and thermal hyperalgesia in transgenic mice which
express the enhanced green fluorescent protein (EGFP)
under the promoter of glutamate decarboxylase 67 to label
GABAergic neurons. In transverse slices from lumbar spinal
cord, membrane excitability of lamina II GABAergic neurons
from neuropathic or sham-treated animals is indistinguishable,
suggesting that intrinsic plasticity of these neurons is not an
essential mechanism of neuropathic pain (467).

D. Changes of Inhibitory Control

Spinal nociceptive neurons are under permanent and
powerful inhibitory control, which is indispensable for
orderly processing of sensory information in spinal dorsal

horn and for a normal perception of pain. Inhibitory sys-
tems in spinal dorsal horn serve four principle functions
to maintain proper nociception [see Fig. 4 and a recent
review for details (454)]: 1) attenuation of the responses
of nociceptive neurons to maintain the proper response
levels during nociception; 2) muting nociceptive neurons
in the absence of noxious stimuli, thereby preventing
spontaneous pain; 3) separating labeled lines for nocicep-
tive and nonnociceptive information to prevent cross-talk
between sensory modalities; and 4) limiting the spread of
excitation to somatotopically adequate areas of the cen-
tral nervous system.

The major fast inhibitory neurotransmitters in spinal
dorsal horn are GABA and glycine acting on ionotropic,
Cl�-permeable GABAA or glycine receptors or metabo-
tropic (G protein-coupled) GABAB receptors. GABA and
glycine are coreleased at some inhibitory synapses in
spinal cord (221) including laminae I–II, at least in imma-
ture rats (235). Junctional codetection by glycine and
GABAA receptors ceases, however, by adulthood, leaving
pure glycinergic postsynaptic responses in lamina I and
either glycinergic or GABAergic responses at equal pro-
portions in lamina II (235). Another cotransmitter at
GABAergic synapses is ATP. ATP is coreleased in a subset
of GABAergic but not glutamatergic neurons and evokes
excitatory synaptic currents in cultured spinal cord lam-
ina I–III neurons (218). Ongoing release of ATP and hy-
drolysis to adenosine depresses GABA-mediated inhibi-
tory postsynaptic currents through action on adenosine
receptors (218).

Limit

FIG. 4. The four principal functions of inhibition in the nociceptive system: attenuation of the responses of nociceptive neurons to maintain the
proper response levels during nociception; muting nociceptive neurons in the absence of noxious stimuli, thereby preventing spontaneous pain;
separating labeled lines for nociceptive and nonnociceptive information to prevent cross-talk between sensory modalities; and limiting the spread
of excitation to somatotopically adequate areas of the central nervous system. The proposed underlying mechanism to achieve the desired effect
and the type of pain to be expected if the inhibition becomes insufficient are shown.
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1. GABAergic systems

A) MODULATION OF THE SPINAL GABAERGIC SYSTEMS. The spi-
nal GABAergic systems can be modulated by neuropa-
thies, inflammation, pharmacological means, and hor-
mones. GABA-mediated neurotransmission may be al-
tered by changes in release probability, number of release
sites, and diffusion. The speed by which GABA is removed
from the synaptic cleft may also change. Furthermore, the
number, the location, and the subunit composition of
synaptic GABA receptors may be modulated, e.g., by
phosphorylation as reviewed (Fig. 3D) (69). Changes in
the anion gradient of postsynaptic neurons may convert
GABA-induced hyperpolarization into depolarization (see
sect. VID1CIB).

I) Modulation by neuropathies. A) Peripheral and

spinal nerve injuries. Chronic constriction injury of the
sciatic nerve induces complex changes in the GABAergic
system, but apparently neither the number of GABAergic
neurons in spinal dorsal horn nor their electrophysiolog-
ical properties change. In fact, in rats which develop
thermal hyperalgesia following chronic constriction in-
jury of sciatic nerve, the number of neurons in laminae
I–III with GABA or glycine immunoreactivity is not differ-
ent from controls, as evaluated with unbiased stereologi-
cal methods 14 days after nerve injury (413). Likewise, in
rats with a spared nerve injury, the levels of GABA, the
vesicular GABA transporter, or the �3-subunit of the
GABAA receptor at synapses in the medial part of the super-
ficial dorsal horn are not different from controls (414). In
mice that express EGFP under the glutamate decarboxyl-
ase 67 promoter, the active and passive membrane prop-
erties of identified spinal GABAergic neurons can be as-
sessed quantitatively. In mice with a chronic constriction
injury of the sciatic nerve and severe mechanical and
thermal hyperalgesia action potential thresholds and
widths, membrane resting potential and membrane input
resistance as well as firing patterns are all unchanged
compared with sham-treated animals. This suggests that
changes in membrane excitability or discharge patterns of
GABAergic neurons in spinal cord lamina II are unlikely
causes for pain in the chronic constriction injury model
(467).

Other important features of the GABAergic system
do, however, change under the conditions of neuropathy.
GABA-like immunoreactivity of neuronal profiles is se-
verely reduced mainly in ipsilateral laminae I–II but also
on the contralateral side already 3 days after chronic
constriction injury of the sciatic nerve (201). At 3 wk
following chronic constriction injury, GABA immunore-
activity is almost absent bilaterally. Some recovery begins
at 5 wk and is almost complete on the contralateral but
not ipsilateral side at 7 wk (201). The number of GABA
immunoreactive neurons is reduced 7 days after a partial
injury of the tibial nerve, not only in the termination area

of the tibial but also of the peroneal nerve ipsi- and
contralateral to the lesion site (278). The reduced immu-
noreactivity is likely due to diminished GABA synthesis,
as the number of GABAergic neurons remains stable and
GABAergic neurons do not express caspase-3, an indica-
tor of apoptotic cell death (278). Indeed, glutamate decar-
boxylase 65 but not glutamate decarboxylase 67 protein
levels decrease 6 days up to 4 wk after chronic constric-
tion injury and for even longer in the spared nerve injury
model (362). After unilateral transection of a sciatic
nerve, the number of neurons in spinal dorsal horn with a
detectable immunoreactivity for GABA and the GABA
content in spinal homogenates decreases 2–4 wk after
neurectomy (59). In contrast, spinal content of GABA is
enhanced bilaterally 1–30 days after a unilateral chronic
constriction injury of sciatic nerve in the rat (463). The
reasons for these discrepant results are presently un-
known. Daily pretreatment with intrathecal MK-801 to
block spinal NMDA receptors abolishes increases in
GABA and glycine levels in spinal cord ipsilateral to the
chronic constriction injury of sciatic nerve and prevents
development of hyperalgesia (463).

In animals with a unilateral chronic constriction in-
jury of the sciatic nerve, spinal levels of GABA transporter
GAT-1 are reduced bilaterally to �40% 7 days after the
ligature compared with controls (343, 478). This should
lead to a reduction of GABA in the terminals in the spinal
dorsal horn. This is in line with the observation that in
spinal cord slices taken from rats with spinal nerve liga-
tion potassium-induced release of GABA is reduced com-
pared with sham-operated controls (281). In contrast,
GAT-1 downregulation does not lead to detectable
changes in synaptosomal contents of GABA which are
unchanged in spinal cord 12 days after unilateral chronic
constriction injury of the sciatic nerve (492). A recent
study found on the other hand an upregulation of GAT-1
in spinal dorsal horn of rats with a chronic constriction
injury of the sciatic nerve (95). In this study, pharmaco-
logical blockage of GAT-1 reduced tactile and thermal
hyperalgesia.

In any way, postsynaptic GABAergic inhibition seems
to be impaired in spinal dorsal horn of neuropathic rats.
But the animal model used may be of importance. The
proportion of neurons in superficial spinal dorsal horn
in vitro that express primary afferent-evoked inhibitory
postsynaptic currents is diminished in animals with
chronic constriction injury and spared nerve injury but
not in animals with a sciatic nerve transection (362).
Likewise, amplitudes and durations of inhibitory postsyn-
aptic currents are reduced after chronic constriction in-
jury and spared nerve injury but not after sciatic nerve
transection (362). After spared nerve injury but not after
sciatic nerve transection inhibitory postsynaptic current
kinetics are changed, then resembling mostly glycinergic
but not GABAergic currents, suggesting a preferential loss
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of GABAergic inhibition (362). Similarly frequency but not
amplitude of GABAergic but not glycinergic miniature
inhibitory postsynaptic currents is reduced after chronic
constriction injury or spared nerve injury, which is also
consistent with diminished GABAergic release (Fig. 3F)
(362).

Unilateral chronic constriction injury of the sciatic
nerve also has effects at the receptor level on primary
afferent nerve fibers. The number of GABAA-receptor �2
subunit mRNA-positive medium to large size neurons in
ipsilateral L4/L5 dorsal root ganglion neurons is reduced
after chronic constriction injury (389). This suggests that
GABAA receptors may be downregulated at the central
terminals of primary afferent nerve fibers. If so, the sen-
sitivity of these terminals to GABA should be diminished.
And indeed, the mean depolarization elicited by GABA on
normal dorsal roots is significantly reduced following sci-
atic axotomy, dorsal root axotomy, or crush injury. In
contrast, chronic sciatic crush injury has no effect on the
GABA sensitivity of dorsal root terminals (243).

Two to four weeks after a unilateral neurectomy of
the sciatic nerve, GABAB receptor binding in lamina II of
the spinal cord is downregulated. In contrast, GABAA

binding is enhanced following nerve transection (58).
There is, however, also evidence suggesting that spi-

nal GABAergic inhibition may be enhanced under some
conditions of neuropathy. Potency of GABAA receptor
blocker bicuculline to enhance A�- and C-fiber evoked
responses of spinal dorsal horn neurons is higher in rats
with a spinal nerve ligation (254). Furthermore, in rats
with a chronic constriction injury of the sciatic nerve,
activation of GABAA receptors may lead to a depolariza-
tion of postsynaptic neurons rather than to an inhibition
as discussed in section VID1CIB.

B) Spinal cord trauma and ischemia. The number of
GABA immunoreactive cells in lumbar spinal dorsal horn
of rats with a transient spinal cord ischemia and mechan-
ical hyperalgesia is reduced bilaterally at 2–3 days but not
at 14 days after injury (615). This suggests a reversible
reduction of GABA content rather than a loss of GABAergic
neurons. And, indeed, after a spinal cord hemisection at
the lower thoracic level, the GABA-synthesizing enzyme
GAD67 is reduced bilaterally in laminae I and II of the
lumbar spinal dorsal horn (162). This possibly translates
into reduced GABAergic function as responses of multi-
receptive neurons 1–2 segments caudal to the lesion are
less strongly inhibited by GABA (117).

Seven days following contusion injury of the thoracic
spinal cord and development of mechanical hyperalgesia
(von Frey thresholds), impaired GABAergic inhibition
may affect various sensory modalities differentially. Ion-
tophoretic application of bicuculline in normal animals
results in reversible increases in mechanoreceptive field
sizes, spontaneous firing rates, and responses to brushing
and pinching the skin. In allodynic rats, bicuculline appli-

cation also enlarges receptive field sizes but has little or
no effect on responses to brushing or pinching the skin
(117). This suggests that tonic GABAergic inhibition of
dynamic mechanical and noxious mechanical input may
be reduced in these neurons.

Finally, after spinal cord injury, the network effects
of GABAA receptor activation may switch from inhibition
to facilitation. In rats with a thoracic spinal cord injury
but not in normal rats, blockade of GABAA receptors by
iontophoretic application of bicuculline reduces rather
than enhances afterdischarges of deep dorsal horn multi-
receptive neurons to noxious skin pinching (but not to
brushing) (117). This suggests that tonic activation of
GABAA receptors directly or indirectly facilitates afterdis-
charges in hyperalgesic rats. In section VID1C synaptic
mechanisms are described by which GABAergic inhibi-
tion may turn into excitation.

II) Modulation by inflammation. The spinal GABAergic
system may also be modulated by peripheral inflamma-
tion. For example, GABAB receptor subtypes 1 and 2
(GABAB1/2) mRNA levels are increased bilaterally in the
dorsal horn of the spinal cord 24 h after Formalin injec-
tion into a hindpaw (329). This upregulation does, how-
ever, not translate into an increased GABAB receptor
function, at least when determined by its activation of G
proteins (457). GABAB1 but not GABAB2 receptors also
increase in dorsal root ganglion ipsilaterally but not con-
tralaterally to the injection site (329).

Inflammation may further result in rapid regulation
of GABA transporters, as GABA uptake is increased in
synaptosomes from mouse spinal cord as soon as 20 and
120 min after subcutaneous injection of Formalin into a
hindpaw (189).

Interestingly, the overall modulatory effect of spinal
GABAA receptors on behavioral nociceptive thresholds
may be reversed during an inflammation induced by com-
plete Freund’s adjuvant in rats. In normal rats, intrathecal
application of GABAA receptor agonist muscimol in-
creases and GABAA receptor antagonist gabazine lowers
nociceptive thresholds. In rats with an inflammation, the
effects are inverted (19).

III) Pharmacological modulation of the spinal

GABAergic system. The activity of spinal GABAergic neu-
rons, the synthesis, and the release of GABA and the
properties and functions of GABA receptors can all be
modulated pharmacologically.

Single dose but not repeated systemic administration
of morphine at analgesic doses enhances GABA content
and glutamate decarboxylase activity in rat spinal dorsal
horn (259). However, an acute application of selective
�-opioid receptor agonist DAMGO selectively depresses
GABAergic and glycinergic inhibitory postsynaptic cur-
rents in lamina II neurons in vitro, probably via a presyn-
aptic mechanism (363). Sustained opioid exposure may
lead to apoptotic death of neurons in spinal cord, many of
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which express glutamic acid decarboxylase for the syn-
thesis of GABA (323).

Indirect evidence suggests that norepinephrine and
phenylephrine may excite GABAergic neurons as they
enhance the frequency of action potential-dependent
spontaneous GABAergic inhibitory postsynaptic currents
in dorsal horn neurons (25). There is also direct evidence
of an excitatory action of norepinephrine acting on �1-
adrenoreceptors on GABAergic neurons. In perforated
whole cell patch-clamp recordings from lamina II neu-
rons, bath application of norepinephrine directly depolar-
izes GABAergic neurons identified by the expression of
EGFP in transgenic mice. This action of norepinephrine is
partially selective for GABAergic neurons as 42% of those
but only 5% of the unidentified neurons are depolarized
(M. Gassner and J. Sandkühler, unpublished observa-
tions).

Release of GABA is enhanced by activation of spinal
muscarinic receptors, as determined by enhanced fre-
quencies of spontaneous GABAergic inhibitory postsyn-
aptic currents recorded from lamina II neurons in spinal
cord slices (26). Similarly, frequency of GABAA receptor-
mediated miniature inhibitory postsynaptic currents in
lamina II neurons increases after acetylcholine applica-
tion. This effect is blocked by atropine (286). Norepineph-
rine (and �1-adrenoreceptor agonist phenylephrine) en-
hances frequency of GABAergic miniature inhibitory
postsynaptic currents with a twofold greater efficacy than
glycinergic miniature inhibitory postsynaptic currents.
Postsynaptic responses to GABA or glycine are not af-
fected, nor are frequencies of miniature excitatory postsynap-
tic currents changed by norepinephrine (27). �2-Adrenore-
ceptor agonist clonidine and �-adrenoreceptor agonist iso-
proterenol are without effect (27). Potassium-stimulated
release of GABA is facilitated by brain-derived neurotrophic
factor in an adult rat isolated dorsal horn preparation (408)
by a yet unknown mechanism. In adult pentobarbital anes-
thetized rats, spinal release of GABA as detected by micro-
dialysis is enhanced by up to 80% by intrathecal application
of selective 5-HT3 receptor agonist 1-phenylbiguanide (230).

The release of GABA can be blocked by various
substances. Nocistatin selectively blocks neurotransmit-
ter release equally from inhibitory GABAergic or glycin-
ergic spinal dorsal horn interneurons by 50% via a pertus-
sis toxin-sensitive mechanism (614). Glutamatergic trans-
mission is, in contrast, not affected. Bath application of
adenosine reduces amplitudes of evoked GABAergic and
glycinergic inhibitory postsynaptic currents of rat spinal
lamina II neurons and diminishes frequency but not am-
plitudes of spontaneous inhibitory postsynaptic currents
in vitro (603), suggesting presynaptic suppression of in-
hibitory transmission. The A1 receptor antagonist 8-cyclo-
pentyl-1,3-dimethylxanthine (CPT) reverses this inhibi-
tion.

Once GABA is released, its effects can still be mod-
ulated at the receptor level. For example, protein kinase C
phosphorylation of the �1-, �2S-, and �2L-subunits of the
GABAA receptor attenuates GABA-induced currents (256).
This protein kinase C-dependent modulation may play a
role for afferent-induced facilitation of spinal nociception.
In the monkey, iontophoretic application of GABA or
muscimol near the recording site of multireceptive lum-
bar spinal dorsal horn neurons reduces responses to
pinching the skin. Pharmacological activation of protein
kinase C reduces this inhibition by GABA or muscimol.
The inhibition by GABA is almost absent when these
agonists are applied 15 min after intradermal injection of
capsaicin (which activates protein kinase C in spinal neu-
rons). Inhibition returns to normal �1.5 h after capsaicin
injection (293). The inhibition by muscimol is not consis-
tently affected (293). Proinflammatory cytokines may be
involved as bath application of either interleukin-1 or
interleukin-2 inhibits the frequency of spontaneous inhib-
itory postsynaptic currents in lamina II neurons (232).
The subunit composition of the GABAA receptor can be
modulated within days, e.g., in oxytocin neurons during
pregnancy and lactation. Predominance of the �1-subunit
reveals fast channel gating kinetics while predominance
of �2-subunits slows kinetics (48).

In rats with a L5 spinal nerve ligation, mechanical
and thermal hyperalgesia is reduced by intrathecal brain-
derived neurotrophic factor (281). Bath application of
brain-derived neurotrophic factor restores impaired
GABA release in spinal cord slices of these rats (281).

B) MODULATION OF HYPERALGESIA AND ALLODYNIA BY THE SPI-
NAL GABAERGIC SYSTEM. I) Facilitation of hyperalgesia and

allodynia by GABA receptor blocker. Blockade of spinal
GABAA receptors by intrathecal application of bicuculline
at doses that do not produce hyperalgesia also do not
affect phase 1 of Formalin response. In contrast, the
number of flinches and scored pain behavior is enhanced
in the interphase period and in phase 2 when bicuculline
is given either before or 7 min after Formalin injections
(226). Thus expression of the second phase of the For-
malin test may be tonically attenuated by spinal GABAer-
gic inhibition. Pretreatment with intrathecal GABAA receptor
agonists isoguvacine or muscimol decreases flinches in
both phases of the Formalin test (226).

II) Reversal of hyperalgesia and allodynia by GABA

receptor agonists. A number of independent studies show
that spinal GABAergic inhibition is impaired in neuro-
pathic animals and that spinal application of GABAA or
GABAB receptor agonists may reverse neuropathic symp-
toms. Hyperalgesia induced by spared nerve injury is
reversed by subcutaneous injections of GABAA receptor
agonists gaboxadol or muscimol but not isoguvacine
(436). In rats, subcutaneous or intrathecal applications of
GABAB receptor agonists (L-baclofen or CGP35024) re-
verse mechanical hyperalgesia induced by partial sciatic
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nerve ligation but not by intraplantar injection of com-
plete Freund’s adjuvant (402), suggesting that neuro-
pathic but not inflammatory mechanical hyperalgesia is
sensitive to GABAB receptor blockade.

In rats, ligation of spinal nerves L5 and L6 results in
tactile hyperalgesia and reduced withdrawal latencies to
noxious skin heating. Intrathecal GABAA receptor agonist
isoguvacine reverses tactile hyperalgesia up to 75% of the
maximal possible effect. This action of isoguvacine is
completely blocked by intrathecal bicuculline or phac-
lofen (312). Thermal hyperalgesia is also reversed by
intrathecal isoguvacine, while intrathecal GABAB recep-
tor agonist baclofen disturbs motor behavior (312).

Intrathecal application of a single dose of either
GABAA receptor agonist muscimol or GABAB receptor
agonist baclofen reverses tactile hyperalgesia in rats with
spinal nerve ligation for 2–5 h. Intrathecal injections of
antagonists at GABAA receptors (bicuculline) or GABAB

receptors (CGP 35348) at doses that fully block the ac-
tions of the respective agonists do not change tactile
hyperalgesia (200). This indicates absence of tonic
GABAergic inhibition in hyperalgesic rats. When neuronal
cells bioengineered to synthesize GABA are transplanted
in the lumbar subarachnoid space of rats with a chronic
constriction injury of the sciatic nerve, both tactile and
thermal hyperalgesia are reversed when transplants are
placed either 1 or 2 wk after partial nerve injury. Later
graft placements are ineffective (500). One study suggests
that even a single dose of GABA may have profound and
lasting effects on neuropathic pain. In the rat, chronic
constriction injury model tactile and thermal hyperalgesia
are permanently reversed by a single dose of GABA given
intrathecally 1 or 2 wk but not 3–4 wk after nerve ligation.
(120). Specifically targeting spinal GABAA receptors con-
taining the �2- and/or �3-subunits reveals antinociception
with minor motor effects (250). Likely, the beneficial ef-
fects of GABA receptor agonists in animal models of
neuropathic pain translate into the clinic. In five human
patients with neuropathic, including phantom limb pain,
continuous intrathecal baclofen improved pain scores
throughout the observation periods of 6 to 20 mo (632).

III) Paradoxical excitation of nociceptive neurons

by GABA. Activation of GABAA receptors opens a Cl� ion
channel. The direction of Cl� flux is generally determined
by level of the Cl� equilibrium potential (ECl) with respect
to the resting membrane potential (Vrest) of the cell. In
most neurons of mature animals, ECl is more negative
than the Vrest. In neurons, potassium-chloride cotrans-
porters and sodium-potassium-chloride cotransporters
are the two classes of cation-chloride transporters that
regulate Cl� transport. Normally the potassium-chloride
cotransporter reduces the concentration of K� and Cl�

while the sodium-potassium-chloride cotransporters in-
crease intracellular Na�, K�, and Cl� within neurons (see
Ref. 421 for a review). The continuous removal of Cl�

from the cells via a potassium-chloride cotransporter
keeps ECl more negative than the Vrest. Thus increasing
the Cl� conductance by activation of GABAA receptors
will lead to a Cl� influx and hyperpolarization. GABAergic
depolarization and eventually excitation can be seen un-
der conditions where ECl is less negative than the resting
membrane potential. This may occur when the potassium-
chloride cotransporter becomes insufficient. This results
in a Cl� efflux and membrane depolarization rather than
an influx into the cell upon activation of GABAA recep-
tors. During development and minutes to weeks after
trauma of cultured hypothalamic or cortical neurons,
GABA may have a depolarizing effect (536). Thus the level
of the chloride concentration gradient across the GABAA

receptor expressing postsynaptic cell membrane deter-
mines if GABA is hyper- or depolarizing (89).

These general biophysical principles, of course, also
apply to the membrane of primary afferent nerve termi-
nals. Here, ECl is, however, normally less negative than
the resting membrane potential, also in mature animals.
This is due to the activity of sodium-potassium-chloride
cotransporters and regularly results in a Cl� efflux and
membrane depolarization. Thus, under normal condi-
tions, activation of GABAA receptors leads to a depolar-
ization of the terminals of primary afferent nerve fibers.
This primary afferent depolarization is not strong enough
to cause action potential firing (i.e., an excitation) under
normal conditions. Primary afferent depolarization rather
inactivates voltage-gated ion channels that are required
for the release of neurotransmitter(s) from the terminals.
Therefore, moderate depolarization of terminals by GABA
may cause presynaptic inhibition.

A) GABAergic excitation of primary afferent nerve

terminals. Cervero and co-workers (63, 64) propose a
mechanism of dynamic mechanical allodynia that is trig-
gered by low-threshold mechanosensitive A�-fiber affer-
ents. If the GABAergic presynaptic depolarization is much
enhanced under the conditions of an inflammation or a
neuropathy, then the threshold for activation of voltage-
gated sodium channels might be passed and action poten-
tial discharges will be elicited in these terminals (Fig. 3G).
These action potentials may trigger the release of excita-
tory neurotransmitter. Some of the GABAergic interneu-
rons that impinge on nociceptive nerve terminals can be
excited by A�-fibers. Therefore, nociceptive specific dor-
sal horn neurons could be indirectly excited by activity in
A�-fibers (63, 64, 577). Following an inflammation, the
upregulation of the sodium-potassium-chloride (Na�, K�,
2Cl� type I) cotransporter in primary afferents leads to an
excessive depolarization of primary afferent terminals by
GABA and cross-excitation between low- and high-thresh-
old primary afferents (421). This finding is in line with the
above hypothesis (see, however, Ref. 559).

B) GABAergic excitation of spinal lamina I dorsal

horn neurons. In rats with a chronic constriction injury of
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the sciatic nerve and dynamic mechanical allodynia, ex-
pression of a potassium-chloride exporter (K�-Cl� co-
transporter-2) in spinal dorsal horn is reduced to about
half of the control levels (89). In streptozotocin-induced
diabetic rats, neuropathy is also accompanied by a re-
duced immunoreactivity for K�-Cl� cotransporter-2 in
laminae I and II (364). This may cause a shift of ECl from
normally �75 to �50 mV. Under these conditions,
GABAA-receptor activation results in a Cl� efflux and
membrane depolarization rather than a Cl� influx into the
cell (Fig. 3E). In some neurons, the resulting depolariza-
tion may be sufficient to evoke action potential firing.
Furthermore, spinal cord lesions may lead to downregu-
lation of Na�-K�-Cl� cotransporter-1 and K�-Cl� cotrans-
porter-2 in the lesion epicenter (93), and in rats, thoracic
spinal cord injuries lead to downregulation of the K�-Cl�

cotransporter-2 in the lumbar spinal dorsal horn and to
reduced GABAergic inhibition (305). Downregulation of
K�-Cl� cotransporter-2 in spinal cord and attenuation of
GABAergic inhibition or its conversion into excitation
may contribute to dynamic mechanical allodynia and to
mechanical and thermal hyperalgesia in rats with a dia-
betic neuropathy (220). Pharmacological blockade of the
potassium-chloride exporter in spinal cord slices of naive
rats also converts inhibitory action of GABA into an ex-
citation in �30% of the lamina I neurons, suggesting that
a shift in anion reversal potential can be caused by re-
duced activity of the potassium-chloride exporter. In in-
tact rats, this leads to mechanical and thermal hyperalge-
sia (89). Taken together, these results suggest a novel
mechanism of GABA receptor-mediated hyperalgesia in
neuropathic animals through inversion in polarity of
GABAA receptor-mediated action on nociceptive spinal
dorsal horn lamina I neurons from inhibition to excitation
(89, 421).

Spinal microglia appear to be involved in this pro-
cess. Stimulation of microglia with ATP causes release of
brain-derived neurotrophic factor from activated micro-
glia. Brain-derived neurotrophic factor binding to its TrkB
receptor on lamina I neurons is essential for changing the
anion gradient and conversion of GABAergic inhibition
into excitation (88). A similar brain-derived neurotrophic
factor-dependent downregulation of the K�-Cl� cotrans-
porter-2 was observed in spinal dorsal horn of rats with a
peripheral inflammation (complete Freund’s adjuvant)
(620).

2. Glycinergic systems

In addition to spinal GABAergic inhibition, spinal
glycinergic interneurons also modulate neuronal activity
in spinal dorsal horn. Some changes in the glycinergic
system have been observed under conditions of experi-
mental hyperalgesia (see Fig. 3, D and F). Glycine may
bind to the Cl�-permeable glycine receptor, a member of

the nicotinic acetylcholine receptor family of ligand-gated
ion channels. Taurine is another agonist at this receptor
with perhaps even higher efficacy than glycine in neurons
of spinal cord lamina II (592). At glycinergic synapses in
superficial spinal dorsal horn, release of glycine may be
inhibited by presynaptic GABAB receptors (70).

A) MODULATION OF SPINAL GLYCINERGIC SYSTEMS. The spinal
content of glycine, like that of GABA, is enhanced bilat-
erally 1–30 days after a unilateral chronic constriction
injury of sciatic nerve in rats (463). The number of neu-
rons in lamina I, lamina II, or lamina III with glycine
immunoreactivity is, however, not different from con-
trols, as evaluated with unbiased stereological methods
14 days after chronic constriction injury of sciatic nerve
(413). It is not known at present if the electrophysiologi-
cal properties of glycinergic neurons change under con-
ditions of neuropathy or inflammation. The number and
function of glycine receptors do, however, change. For
example, a unilateral sciatic nerve constriction leads to a
bilateral reduction in the number of glycine receptors in
rat spinal dorsal horn (488). Furthermore, protein kinase
C phosphorylation of the �- and �-subunits of the glycine
receptor attenuates glycine-induced currents (535). Ionto-
phoretic application of glycine near the recording site of
multireceptive lumbar spinal dorsal horn neurons in mon-
keys reduces responses to pinching the skin. Activation of
protein kinase C (by phorbol 12-myristate 13-acetate) re-
duces this inhibition by glycine. The inhibition by glycine
(or GABA) is almost absent when the agonist is applied 15
min after intradermal injection of capsaicin (which acti-
vates protein kinase C in spinal neurons). Inhibition re-
turns to normal �1.5 h after capsaicin injection (293).

The Cl� conductance of glycine receptor channels
strongly increases via activation of Gs but not Go or Gi

proteins when cAMP or protein kinase A is included into
the pipette solution (494). cAMP enhances channel open
probability but not mean channel open times or channel
conductance, nor binding affinity of glycine to its receptor
(494). The authors suggest that the monoamines 5-HT
acting on 5-HT1 receptors and norepinephrine acting on
�2-adrenergic receptors could change cAMP levels in tar-
get cells and thereby the cellular responses to glycine
through protein phosphorylation. In a spinal cord slice
preparation from young rats, glycine receptor-mediated
currents are enhanced by 5-HT in superficial spinal dorsal
horn neurons (288) via activation of 5-HT2 receptors.
Inhibition of protein kinase C but not inhibition of cAMP-
dependent protein kinase A blocks this 5-HT-mediated
potentiation of glycinergic currents. A membrane-perme-
able diacylglycerol analog, like 5-HT, enhances glycine
receptor-mediated currents. Thus 5-HT likely activates
protein kinase C and potentiates glycinergic currents via
a diacylglycerol-dependent pathway (288).

Prostaglandin E2 is released in spinal dorsal horn
during peripheral inflammation and may depress spinal
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glycinergic inhibition via the �2 subtype (173). The inhib-
itory (strychnine-sensitive) glycine receptor is a specific
target of prostaglandin E2. In fact, prostaglandin E2, but
not prostaglandin F2�, prostaglandin D2, or prostaglandin
I2, reduces inhibitory glycinergic synaptic transmission in
spinal dorsal horn in low nanomolar concentrations,
whereas GABAA, AMPA, and NMDA receptor-mediated
transmissions remain unaffected (5).

ATP acting on P2X receptors enhances the frequency
of glycinergic miniature inhibitory postsynaptic currents
in dissociated trigeminal neurons. Substance P alone is
without effect. The combination of ATP and substance P
does, however, reduce ATP-induced facilitation by a pre-
synaptic interaction (558), suggesting that substance P
may indirectly diminish glycinergic inhibition. Consis-
tently, in lamina I neurons recorded in rats with an in-
flamed hindpaw (complete Freund’s adjuvant, which re-
leases substance P in superficial spinal dorsal horn), the
number of glycinergic miniature inhibitory postsynaptic
currents is strongly reduced (370).

B) MODULATION OF HYPERALGESIA AND ALLODYNIA BY THE SPI-
NAL GLYCINERGIC SYSTEM. After a unilateral chronic constric-
tion injury of the sciatic nerve, the potency of glycine
receptor antagonist strychnine increases. Intrathecal
doses of strychnine that are subthreshold in control ani-
mals do, however, lower thermal threshold for with-
drawal reflexes ipsi- but not contralateral to the nerve
injury (463). Daily pretreatment with intrathecal MK-801
to block spinal NMDA receptors abolishes increases in
glycine potency and prevents development of hyperalge-
sia (463). Furthermore, tactile hyperalgesia in the partial
sciatic nerve ligation model is attenuated when the re-
uptake of glycine either by neuronal glycine transporter 2
or glial glycine transporter 1 is impaired. This was shown
by intrathecal injections of inhibitors or knockdown of
spinal glycine transporters by siRNA that reduce mechan-
ical hyperalgesia in mice (368).

E. Changes in Descending Modulation

In recent years, considerable evidence has accumu-
lated showing that spinal nociception may be facilitated
by descending pathways (347, 417, 505, 532, 561). Inflam-
mation not only causes hyperalgesia in the area immedi-
ately surrounding the primary injury (i.e., secondary hy-
peralgesia) but may also cause more generalized hyperal-
gesia at areas well apart from the lesion site. For example,
inflammation at a hindpaw facilitates nociceptive with-
drawal reflexes at the tail (54). Similarly, Formalin in-
jected into the tail enhances responses of lumbar spinal
dorsal horn neurons to noxious heating of a hindpaw (41).
Both secondary hyperalgesia and the remote sensitization
require a spino-bulbo-spinal loop with a descending facili-
tatory arm (Fig. 3H).

A number of behavioral studies show that neurons in
the rostroventral medulla are required for full expression
of hyperalgesia in different animal models of inflamma-
tion and neuropathy. Secondary hyperalgesia caused in
rats by mustard oil involves activation of glutamate re-
ceptors of the NMDA type and subsequent activation of
nitric oxide synthase in the rostroventral medulla (530).
Secondary thermal hyperalgesia induced either by intra-
articular carrageenan/kaolin injection into the knee or by
topical mustard oil application to the hindleg is com-
pletely blocked by bilateral rostral medial medulla lesions
produced by the soma-selective neurotoxin ibotenic acid
(534). Bilateral destructions of cells in the nucleus reticu-
laris gigantocellularis with ibotenic acid lead to an atten-
uation of hyperalgesia and a reduction of inflammation-
induced spinal c-Fos expression (569). Likewise, mechan-
ical hyperalgesia induced by spinal nerve ligation in rats is
reversed by local anesthetic block in the rostroventral
medulla (406). Spinal nerve ligation induces tactile and
thermal hyperalgesia; both are blocked by bilateral injec-
tions of lidocaine (51) or a cholecystokinin type B recep-
tor antagonist (L 365,260) into the rostroventral medulla
(255).

Descending facilitation and inhibition of behavioral
and dorsal horn neuronal responses to noxious stimula-
tion can be triggered from the same sites in rostroventral
medulla. Electrical stimulation at low intensities (5–25
�A) is faciliatory while higher intensities (�50 �A) are
inhibitory (626, 628). Likewise, injections of small doses
(0.03 pmol) of neurotensin in the rostroventral medulla
trigger descending facilitation of multireceptive and noci-
ceptor specific neurons in rat lumbar spinal dorsal horn
(531). High doses (�300 pmol) induce descending inhibi-
tion. Microinjection of cholecystokinin into the rostroven-
tral medulla of naive rats also produces a robust mechan-
ical and a more modest thermal hyperalgesia (255). The
same studies also identified sites in the rostroventral me-
dulla from which only facilitation or inhibition could be
elicited.

A neuronal group exists in the rostroventral medulla
which increases its firing rates just before the onset of the
nociceptive tail-flick reflex. These neurons were termed
“ON-cells” and probably mediate descending facilitation.
In contrast, “OFF-cells” cease firing shortly before the
tail-flick reflex occurs and may be involved in descending
inhibition. The roles of ON- and OFF-cells have been
reviewed (177, 327, 417). When �-opioid receptor express-
ing cells in the rostroventral medulla are selectively de-
stroyed, then spinal nerve ligation no longer induces me-
chanical and thermal hyperalgesia (416). This is compat-
ible with an involvement of ON-cell in the rostroventral
medulla as firing of these neurons is depressed by a
�-opioid receptor agonist (DAMGO) (178). Sensory re-
sponses of ON- and OFF-cells are altered in rats with a
spinal nerve ligation. Both neuron types exhibit novel
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responses to innocuous mechanical stimulation and en-
hanced responses to noxious mechanical stimulation.
This neuronal hypersensitivity correlates with mechanical
and thermal hyperalgesia in these rats (57).

Interactions between glial cells and neurons are in-
volved by the activation of descending facilitation from
the rostral ventromedial medulla following peripheral
nerve injury. Chronic constriction injury of the rat infraor-
bital nerve leads to an early and transient reaction of
microglia and a prolonged reaction of astrocytes in that
brain region. Microinjections of microglial and astrocytic
inhibitors that prevent glial cell activation also attenuate
mechanical hyperalgesia at 3 and 14 days after nerve
injury (570).

An early study reported that electrical stimulation in
dorsolateral funiculus of decerebrated rats produces
largely excitatory effects on projection neurons in con-
tralateral spinal lamina I (331). Bilateral lesions of the
dorsolateral funiculus abolish descending inhibition by
electrical stimulation or neurotensin microinjection with-
out, however, affecting descending facilitation (531, 628).
This suggests that descending facilitation and inhibition
can be induced from the same brain stem sites but employ
separate descending pathways. Others have found that
lesions in ventrolateral funiculus (629) attenuate descend-
ing facilitation.

Descending facilitation of behavioral and spinal neu-
ronal responses to noxious stimuli cannot only be in-
duced from the rostroventral medulla (227, 532, 626, 628)
but also from more rostral sites in the brain including the
anterior cingulate cortex (55), pretectal (427) or dorsal
reticular nuclei (14), and periaqueductal gray (406). It
has been suggested that the final common descending
facilitatory pathway originates from the rostroventral
medulla (417) and contributes to enhanced pain sensi-
tivity (532).

ON-cells may be at the origin of the descending fa-
cilitatory arm of a spino-bulbo-spinal positive-feedback
loop. The ascending arm may arise from a small but
well-defined group of spinal lamina I projection neurons.
These neurons express the neurokinin 1 receptor for sub-
stance P (505) and activity-dependent long-term potenti-
ation at synapses with primary afferent C-fibers (see sect.
VIB and Refs. 202, 204). Selective ablation of these lamina
I neurons reduces mechanical and thermal hyperalgesia
by inflammation or nerve injury (318, 383) and the de-
scending facilitation of spinal wide-dynamic range neu-
rons (505).

Descending facilitation involves activation of spinal
receptors for serotonin (627). The 5-HT3 receptor subtype
appears to mediate descending facilitation originating
from spinal neurokinin 1 receptor expressing cells (505).
Spinal microglia and astrocytes also play a role. Microglia
may be activated by neurotransmitter(s) such as excita-
tory amino acids or substance P either released from

primary afferents and/or from fibers descending from the
rostroventral medulla to spinal dorsal horn (561).

Both descending inhibition and facilitation may serve
to temporarily adapt the general pain responsiveness to
the individual needs. Descending facilitation contributes
to generalized hyperalgesia and allodynia as components
of the “sickness response” to infection and inflammation
(see sect. VIIA) (561). This may promote healing. If de-
scending facilitation is inadequate with respect to strength or
duration, it may become a cause for chronic pain. The
mechanisms of generalized facilitation of nociception may
have relevance for some human pain patients as it has
been suggested that in fibromyalgia patients endogenous
pain modulatory systems are impaired (223).

In addition to enhanced descending facilitation as a
promoter of hyperalgesia and allodynia, peripheral in-
flammation may also enhance descending inhibition that
counteracts the development of hyperalgesia. For exam-
ple, 4 h after a unilateral carrageenan injection into a
hindpaw of rats, thermal hyperalgesia is enhanced when
the locus coeruleus/subcoeruleus from which descending
noradrenergic fibers originate is lesioned bilaterally but
not unilaterally (309).

F. A�-Fiber-Induced Pain (Mechanical Allodynia)

Touch-evoked pain is a hallmark of neuropathic pain.
There is now clear evidence that impulses in large my-
elinated A�-fibers may contribute to mechanical allodynia
in animal models and in pain patients (56, 157).

1. Phenotypic switch in A�-fibers

Under normal conditions, stimulation of primary af-
ferent A�-fibers fails to facilitate spinal nociception and
does not induce hyperalgesia or allodynia. In the course
of an inflammation, some large myelinated A�-fibers may
switch their phenotype and begin to synthesize substance
P. Upon activation, A�-fibers may then release substance
P into the spinal dorsal horn, and this may, e.g., via
extrasynaptic spread of substance P, contribute to facili-
tation of spinal nociception and enhanced responsiveness
of spinal nociceptive neurons (382). Before considering a
“phenotypic switch,” it is important to ensure that the
markers used for identifying an afferent fiber type do not
change also under the experimental conditions. For ex-
ample, neurofilament (NF) 200 kDa remains a good
marker for A-fiber neurons, and isolectin B4 and sub-
stance P remain good markers for C-fiber neurons after
chronic constriction injury (440).

After sciatic nerve transection, substance P immuno-
reactivity is induced in medium- and large-sized dorsal
root ganglia cells and reduced in small-sized cells (385).
The expression of preprotachykinin mRNA encoding sub-
stance P and related peptides is strongly upregulated in
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large A-type neurons of the rat dorsal root ganglion fol-
lowing unilateral chronic constriction injury of the sciatic
nerve (325). After intraplantar injection of complete
Freund’s adjuvant, mechanical stimulation of the inflamed
skin or electrical stimulation at A�-fiber intensity of sen-
sory nerve fibers innervating the inflamed tissue leads to
a slowly progressing facilitation of flexor motor re-
sponses (308). Stimulation of a peripheral nerve at A-fiber
intensity normally does not cause afterdischarges in spi-
nal multireceptive neurons in spinalized rats. After a
chronic constriction injury of sciatic nerve, however, af-
terdischarges do occur and can be blocked by a neuroki-
nin 1 receptor antagonist (CP-99,994) (409). This newly
acquired capacity of A�-fibers to enhance spinal nocicep-
tion may be due to a novel expression of substance P in
these primary afferents, thereby switching their pheno-
type to one resembling nociceptive C-fibers (382; see
also Fig. 3L). In three nerve injury models (sciatic
nerve transection, spinal nerve ligation, and chronic
constriction injury), substance P is, however, not up-
regulated to any detectable degree, and stimulation of
A�-fibers does not cause neurokinin 1 receptor inter-
nalization in spinal dorsal horn, challenging the view
that substance P would be released from A�-fibers
under these conditions (196).

In addition to substance P, a large number of other
molecules are also either up- or downregulated in dorsal
root ganglion neurons in various animal models of pain,
as reviewed by Ueda (528), Hucho and Levine (194), and
Woolf and Ma (587).

2. Sprouting of A�-fibers

After nerve injury but not under normal conditions,
impulses in A�-fibers may elicit pain sensation. Thus in-
formation in large myelinated primary afferent must gain
access to the nociceptive system. And, indeed, in neuro-
pathic animals, c-Fos expression, an indication for neuro-
nal activity, is increased in lamina II dorsal horn neurons
following repeated touch stimuli. This suggests that low-
threshold mechanosensitive fibers may now directly or
indirectly activate nociceptor specific lamina II neurons
(40). Likewise, in animal models of neuropathic pain (sci-
atic nerve transection or chronic constriction injury), A�-
fiber-mediated input to the nociceptive superficial dorsal
horn increases substantially (252, 253, 392). An attractive
hypothesis was suggested by Woolf et al. (588) who re-
ported that application of the neural tracer horseradish
peroxidase to a peripheral nerve results in transgangli-
onic transport to the central terminals of the labeled
axons. When the B unit of cholera toxin is conjugated to
horseradish peroxidase, normally only myelinated affer-
ents are labeled. When this conjugate is applied to an
intact nerve of rats, the marker is consequently found
selectively in laminae I, III, and deeper dorsal horn, which

matches the known termination of myelinated primary
afferents (588). In animals with a transection of a periph-
eral nerve, labeling was also found in lamina II, which is
normally devoid of A-fiber terminals. This was interpreted
as sprouting of A-fibers into an area normally occupied by
C-fibers only. This interpretation was substantiated by
intracellular labeling of low-threshold primary afferents
(588). This labeling method was used in a number of
subsequent studies from the same (115, 316, 317) and
other laboratories (34, 376, 401, 485) and revealed similar
results. Later studies found, however, that cholera toxin B
subunit may not be a reliable marker for myelinated fibers
following peripheral nerve injury but rather taken up
indistinctively by small and large size dorsal root ganglion
neurons (475). Thus, after nerve transection, the marker
is taken up also by fine primary afferents (516), includ-
ing unmyelinated C-fibers (459) and cholera toxin B
subunit, then no longer selectively labels A-fibers.
These authors conclude that after peripheral nerve in-
jury, the label found in lamina II is largely due to the
uptake of the marker by injured C-fibers but not due to
sprouting of A-fibers (459). This conclusion is in line
with recent studies which found only very limited
sprouting of single, identified A�-fiber afferents after
nerve injury (30, 197). Taken together, these studies
challenge the hypothesis that sprouting of A�-fibers
into the superficial laminae after nerve section is sub-
stantial (30, 197, 459, 516).

3. Opening of polysynaptic excitatory

synaptic pathways

An alternative explanation for novel A�-fiber input to
superficial spinal dorsal horn neurons is the opening of
preexisting polysynaptic pathways between A�-fiber af-
ferents that terminate in deeper dorsal horn and nocicep-
tive neurons in superficial spinal dorsal horn (Fig. 3J).
Recent studies suggest that indeed some forms of neu-
ropathy or inflammation may facilitate polysynaptic low-
threshold input to neurons in laminae I and II of spinal
dorsal horn (24, 468). In transversal lumbar spinal dorsal
horn slices, electrical stimulation or microinjection of
glutamate [which does not excite (sprouted) fibers of
passage] into the deep dorsal horn or stimulation dorsal
roots at A�-fiber intensity excites only very few neurons
in the superficial dorsal horn of control animals. In con-
trast, numerous neurons in the superficial dorsal horn are
excited in slices taken from animals with a spared nerve
injury (468). Taken together, these results suggest that
A�-fiber afferents excite interneurons in lamina III, which
via polysynaptic pathways trigger excitation of superficial
dorsal horn neurons in neuropathic but not in control
animals leading to touch-evoked pain (468).
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G. Other Potential Mechanisms of Hyperalgesia

and Allodynia

1. Sprouting of fine primary afferents

During development, spinal termination patterns of
primary afferents including nociceptive C-fibers are finely
tuned. Transgene overexpression of nerve growth factor
in spinal dorsal horn results in sprouting of a subpopula-
tion of nociceptive primary afferents that express sub-
stance P and calcitonin gene-related peptide in spinal
dorsal horn (Fig. 3I). This C-fiber sprouting is accompa-
nied by mechanical and thermal hyperalgesia (438).
Sprouting of C-fiber afferents has been investigated in
some detail by using calcitonin gene-related peptide im-
munoreactivity for peptidergic and isolectin B4 immuno-
reactivity as marker for small nonpeptidergic fibers. Fol-
lowing rhizotomy of L4–S1 dorsal roots and injury of the
saphenous nerve in rats, L2, L3 dorsal root afferents may
regenerate differentially. Isolectin B4 labeling is not much
different in lamina II of denervated spinal cord segments.
In contrast, labeling for calcitonin gene-related peptide is
much enhanced in segments denervated by rhizotomy in a
nonsomatotopic manner (33). The authors conclude that
peptidergic (calcitonin gene-related peptide-positive) C-
fibers sprout vigorously while nonpeptidergic (isolectin
B4 positive) C-fibers remain stable after peripheral nerve
injury (33). Collateral sprouting, i.e., sprouting of unin-
jured axons into the denervated territory, not only re-
quires nerve growth factor. In addition, an intact interme-
diate filament network within nerve fibers is also essential
for collateral sprouting of small-diameter primary afferent
nerve fibers. Disruption of intermediate filament network
in transgenic mice significantly impairs the ability of un-
injured small-sized dorsal root ganglion neurons to sprout
collateral axons into adjacent denervated skin (32).

Possibly repulsive guidance cues such as semaphor-
ing 3A play a role in limiting sprouting of a subgroup of
C-fiber afferents. This repellent is thought to restrict ter-
mination of nerve growth factor-responsive nociceptive
afferents to superficial laminae. Reduced sprouting of
calcitonin gene-related peptide and substance P-contain-
ing axons leads to decreased mechanical hyperalgesia
tested with von Frey filaments (510). Thermal hyperalge-
sia is, in contrast, not significantly affected by semaphorin3A
(510).

2. “Wind-up” of action potential firing

Some of the neurons in spinal dorsal horn with exci-
tatory input from primary afferent C-fibers display the
phenomenon of “wind-up,” i.e., the increase in the number
of action potential discharges in response to repetitive
C-fiber stimulation. When C-fiber afferents are stimulated
at low frequencies (0.3–5 Hz), postsynaptic responses
increase with almost each stimulus until a saturation level

is reached (339). This is the case after �10–30 C-fiber
stimuli, i.e., after 5–60 s. Thus wind-up is a short-lasting
phenomenon that enhances action potential firing of
some spinal dorsal horn neurons during the first few
seconds of an ongoing noxious stimulus. Thereafter, re-
sponses no longer increase but may rather decrease.
Wind-up is a form of temporal summation of action po-
tential discharges, due to the summation of excitatory
postsynaptic potentials. Temporal summation occurs when
the duration of excitatory postsynaptic potentials is longer
than the interspike intervals of the presynaptic C-fiber dis-
charges. Since NMDA receptor-mediated postsynaptic
currents typically prolong excitatory postsynaptic poten-
tials, it is not surprising that wind-up is sensitive to NMDA
receptor blockage (589). Wind-up can be observed in
normal animals, i.e., in the absence of any pathological
changes of spinal nociception. Thus wind-up is a feature
of the normal coding properties of some spinal dorsal
horn neurons and per se not a sign of “sensitization” in
spinal dorsal horn. In other words, the absence or pres-
ence of wind-up cannot be used as an indicator for any
form of abnormal pain amplification, and consequently,
wind-up is not a cellular mechanism of hyperalgesia or
chronic pain. A physiological function of wind-up could
be to enforce a nocifensive response during a sustained
noxious stimulus that triggers discharges in C-fibers at
low rates. If the nocifensive response is not triggered
within the first few seconds, wind-up will increase the
discharge frequencies of some spinal dorsal horn neurons
possibly beyond threshold for a response, e.g., a with-
drawal reflex. This interpretation is in line with the ob-
servation that wind-up can be seen in motoneurons (589)
and in motor reflexes (141).

Importantly, a number of changes that may lead to
pain amplification may also lead to changes in the prop-
erties of wind-up. For example, LTP at synapses between
C-fibers afferents and second-order neurons will lead to
larger and longer-lasting excitatory postsynaptic poten-
tials and thus may result in stronger wind-up and in
lowering of the wind-up threshold frequency of a given
neuron. Likewise, increased membrane excitability, i.e.,
lowering the threshold for action potential firing and/or
less negative membrane potentials or changes in dis-
charge patterns from single spiking to burst discharges,
all would result in stronger wind-up in response to repet-
itive C-fiber stimulation. Thus, while wind-up by itself
cannot be used as a proof of alterations in spinal noci-
ception changes in the incidence of neurons that display
wind-up, increase in wind-up strength or decrease in
wind-up threshold frequencies may all indicate that some
forms of facilitation occurred in spinal nociceptive path-
ways.

Wind-up of action potential discharges likely in-
creases activity-dependent Ca2� influx into the respective
neurons and thereby Ca2�-dependent signal transduction
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pathways. One of the many consequences of which could
be activity-dependent changes in synaptic strength, mem-
brane excitability, and discharge patterns. However, wind-up
is not necessary for the induction of long-term changes in
excitability in most spinal dorsal horn neurons (for review,
see also Refs. 180, 586).

Perceptual correlates of action potential wind-up can
be studied in normal human subjects (437, 496), in human
subjects with an experimental hyperalgesia (471, 560),
and in pain patients (267, 497) when repetitive noxious
stimuli are given at a frequency that is compatible with
the window of wind-up frequencies, i.e., if the interval
between C-fiber stimuli is no longer than 3 s. A number of
studies suggest that NMDA-receptor-dependent wind-up
of C-fiber-evoked second pain is stronger in patients with
fibromyalgia compared with normal controls (419, 498).

3. Epileptiform activity in nociceptive pathways

Paroxysmal forms of neuropathic pain share some
key features with epileptic seizures. Both can be triggered
by harmless sensory stimuli and once started they have a
rather stereotyped progression. Another common feature
is the refractory period, i.e., during the immediate time
after an attack no new attack can be evoked. If not
adequately treated, both may end up in a status, i.e., a
series of attacks without complete recovery between the
attacks. Last but not least, both can be treated success-
fully by anticonvulsant drugs (443). Epileptiform activity,
i.e., highly synchronized, rhythmic discharges of popula-
tions of neurons, has been observed in the nociceptive
system of the spinal dorsal horn (Fig. 3K). Patch-clamp
recordings from individual neurons and Ca2� imaging of
multiple single neurons in a slice preparation of the rat
lumbar spinal cord revealed epileptic activity in response
to bath application of the potassium channel blocker
4-aminopyridine (4-AP) (443). 4-AP is often used to induce
epileptic activity in the cerebral cortex. In the spinal cord,
epileptiform activity was also observed in lamina I neu-
rons with a direct projection to the parabrachial area, i.e.,
in neurons that are directly involved in neuropathic pain
behavior in animals (318). Bath application of �-opiate
receptor agonist DAMGO or �2-adrenoreceptor agonist
clonidine does not or only weakly attenuates epileptiform
activity. In contrast, antiepileptic drugs such as phenyt-
oin, carbamazepine, and valproate are strongly effective
(443).

4. Enriched responsiveness of spinal nociceptive

neurons

A large number of studies have shown that nocicep-
tive spinal dorsal horn neurons become more excitable by
peripheral inflammation or nerve injuries. This includes
enhanced responsiveness to normally innocuous natural
or electrical nerve stimuli, expansion of low-threshold

cutaneous receptive fields, enhanced responses to nox-
ious stimuli, and development of spontaneous action po-
tential discharges. There is still no agreement on the
differential roles of the various classes of spinal dorsal
horn neurons for acute, inflammatory, and/or neuropathic
pain. For example, in intact rats, surgical incision of the
hairy skin and subsequent suturing causes mechanical
and thermal hyperalgesia from 30 min post incision to 3–5
days (228). In decerebrated, spinalized rats, the same
injury triggers enhanced responses of wide-dynamic
range, low-threshold and high-threshold spinal dorsal
horn neurons during the injury, elevated background ac-
tivity in wide-dynamic range but not in low-threshold or
high-threshold neurons for 30 min and expansion of cu-
taneous low- and high-threshold mechanoreceptive fields
in wide-dynamic range but not low-threshold or high-
threshold neurons (228). High-threshold neurons develop
responsiveness to low-threshold input only after spinal
bicuculline but not after incision (228). The authors con-
clude that enhanced excitability of wide-dynamic range
but not high-threshold or low-threshold neurons mediate
mechanical and thermal hyperalgesia after injury of hairy
skin (228). Neither of these neuronal cell types investi-
gated is, however, a functionally homogeneous group but
comprise excitatory and inhibitory neurons, interneurons,
and projection neurons.

Some studies were performed on dorsal horn neu-
rons with a verified projection to brain areas such as
spino-thalamic tract neurons. Results from these studies
suggest that enhanced neuronal activity in dorsal horn
may likely affect nociceptive processing in the brain.
These studies have been reviewed extensively before (39,
92, 140, 420, 579, 580, 625).

VII. IMMUNE-CENTRAL NERVOUS

SYSTEM INTERACTIONS

A. The Sickness Syndrome

Nonspecific manifestations of inflammation and in-
fection may include fever, drowsiness, and often an in-
creased sensitivity to painful stimuli. A peripheral im-
mune challenge leads to the production of proinflamma-
tory cytokines such as tumor necrosis factor, interleukin-1,
and interleukin-6. These peripheral mediators trigger the de
novo synthesis of proinflammatory cytokines by cells
within the central nervous system including the spinal
cord, mainly microglia, and astrocytes (324, 562, 565).
These processes subsequently cause the sickness syn-
drome. The immune-to-brain communication involves
blood-borne signaling and neural pathways via sensory
vagus nerve fibers (562) and relays in nucleus tractus
solitarius and in the ventromedial medulla and descend-
ing pathways in the dorsolateral funiculus of the spinal
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cord (567). The sickness syndrome can be induced exper-
imentally in animals by intravenous injections of pyro-
gens such as lipopolysaccharides. Systemic (intraperito-
neal) injection of lipopolysaccharides produces thermal
hyperalgesia, as revealed by decreased tail-flick latencies
(326). Hyperalgesia is accompanied by enhanced spinal
cord levels of interleukin-1, a product of glial cell activa-
tion (see also review by Watkins and Maier, Ref. 561).
However, intrathecal administration of interleukin-1 fails
to induce hyperalgesia, while intraperitoneal or intracere-
broventricular injections are effective (311, 568). A sys-
temically injected single dose of lipopolysaccharides fur-
ther induces within 6 h muscle hyperalgesia as measured
by the grip force assay in mice (233).

A potential mechanism for immune-to-brain commu-
nication (563) arising from the abdomen is discussed by
Goehler and colleagues (155). An ascending-descending
loop may involve the nucleus tractus solitarius-nucleus
raphe magnus-spinal cord dorsolateral funiculus circuit
(567). Spinal microglia may be activated by neurotrans-
mitter(s) released from nucleus raphe magnus-spinal cord
pathways such as excitatory amino acids or substance P.
The respective receptors are all expressed by spinal mi-
croglia and astrocytes, and ligand binding activates these
glial cells in vitro (561).

Subcutaneous injection of Formalin into the dorsum
of one hindpaw induces thermal hyperalgesia also at dis-
tant sites, e.g., at the tail as measured by the tail-flick
reflex (564, 574). This remote hyperalgesia is not medi-
ated solely by circuitry intrinsic to the spinal cord, but
rather involves activation of centrifugal pathways origi-
nating within the brain and descending to the spinal cord
via pathway(s) outside of the dorsolateral funiculus. At
the level of the spinal cord, this hyperalgesic state is
mediated by an NMDA-nitric oxide cascade, since hyper-
algesia can be abolished by administration of either an
NMDA antagonist (D-2-amino-5-phosphonovalerate) or a
nitric oxide synthesis inhibitor (L-NAME) (574). The de-
crease in tail-flick latency is further prevented by intra-
thecal fluorocitrate, which is a glial metabolic inhibitor. A
human recombinant interleukin-1 receptor antagonist or
an antibody directed against nerve growth factor, i.e.,
inhibition of products of glial cell activation, are also
effective (564). Thus sickness and inflammation-induced
hyperalgesia involve overlapping central nervous system
circuits and signal transduction pathways (561).

B. Role of Spinal Glia for Allodynia

and Hyperalgesia

Work of the recent years has shown that abnormal
pain sensitivity involves altered function of neuronal net-
work in spinal dorsal horn and that activated spinal glial
cells act as an intermediary between the initial insult and

long-term neuronal plasticity leading to pain amplifica-
tion. Glial cells, i.e., microglia, astrocytes, and oligoden-
drocytes, constitute �70% of the cell population in brain
and spinal cord. The physiology of microglial cells has
been reviewed recently (129). Spinal microglia and astro-
cytes are both immunoeffector cells of the central ner-
vous system that are activated following nerve injury or
inflammation (104, 520, 566). Furthermore, the number of
microglial cells (9) and the number of astrocytes (278)
rise in spinal dorsal horn ipsilateral to a peripheral nerve
injury. Selective pharmacological blockade of glial cell
functions prevents and reverses abnormal pain sensitiv-
ity.

1. Activation of spinal glial cells

Microglia can be activated rapidly by neuronal activ-
ity (129). One candidate for neuron-glia interaction is the
glial excitatory chemokine fractalkine, which is expressed on
the extracellular surface of spinal neurons and spinal sen-
sory afferents. After it is released upon strong neuronal
excitation, e.g., in response to an insult, it binds to CX3C
receptors mainly expressed by microglia. Intrathecal frac-
talkine causes mechanical and thermal hyperalgesia,
while intrathecal fractalkine receptor antagonist delays
onset of mechanical and thermal hyperalgesia following
chronic constriction injury or inflammatory neuropathy of
sciatic nerve (352).

Microglia may also be activated by neurotransmitters
such as excitatory amino acids or substance P either
released from primary afferents, spinal dorsal horn cells
or supraspinal descending fibers, and by ATP, nitric ox-
ide, prostaglandins, and heat shock protein. The respec-
tive receptors are expressed not only by spinal microglia
but also on astrocytes [520, 561; see also review by
Watkins and Maier (562)].

Microglia activation is not a stereotype process but
involves various combinations of proliferation and mor-
phological changes, upregulation of surface antigens such
as major histocompatibility complex classes I and II an-
tigens, cellular adhesion molecules, cluster determinants
4 and 45 and integrin alpha M, P2X4 receptors (512), and
elevated expression of complement receptor 3. From cen-
tral nervous system injury models it has been suggested
that microglia activation releases substances that then
activate astrocytes (512). Activation of astrocytes in-
volves hypertrophy and upregulation of the expression of
glial fibrillary acidic protein. Astrocytes (but not micro-
glia) closely appose synapses from which they receive
signals and which function they modify. For example,
activated astroglia may take up less than normal gluta-
mate near excitatory synapses, thereby enhancing its ef-
fects on excitatory neurotransmission and neurotoxicity,
which in spinal dorsal horn might contribute to hyperal-
gesia (566).
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Already 4 h after L5 spinal nerve transection, the
earliest time point investigated, microglial activation
markers toll-like receptor 4 and cluster determinant 14
are all upregulated at the mRNA level as assessed by
real-time reverse transcription polymerase chain reaction
(512). Microglia thus constitute the first noticeable im-
mune responses in spinal cord to several types of periph-
eral stimuli. Markers remain elevated for 14 days and
decline by 28 days. Immunohistochemistry reveals an in-
crease in the number of activated microglial cells as de-
termined by OX42 and glial fibrillary acidic protein in
astrocytes of ipsilateral dorsal and ventral horns as early
as 2 days after partial sciatic nerve transection lasting for
84 days which parallels the time course of mechanical
hyperalgesia (91).

Activation of P2X4 receptor, an ATP-gated ion chan-
nel, selectively expressed in microglia of the spinal cord is
upregulated after L5 spinal nerve ligation. Likewise, sub-
cutaneous injections of diluted Formalin cause an in-
crease in P2X4 receptor expression on activated microglia
in ipsilateral dorsal horn which peaks at day 7 after the
injection (161). This suggests that not only nerve injury
but also inflammation may trigger expression of this ATP-
gated ion channel. In addition, G protein-coupled purino-
receptors also play a role. Intrathecal application of a glial
P2Y12 receptor blocker (AR-C69931MX) prevents devel-
opment of and reverses established tactile hyperalgesia in
rats with a tight ligation of a L5 spinal nerve (517). In mice
lacking the P2Y12 receptor, tactile hyperalgesia but not
normal responses to mechanical stimuli is impaired (517).
Toll-like receptors are also expressed on microglia and
appear to be essential for their activation by peripheral
nerve injury. Antisense knockdown of toll-like receptor 3
in spinal cord attenuates activation of spinal microglia
and development of tactile hyperalgesia in rats with a L5
spinal nerve lesion (388).

The functional and phenotypic pattern of activation
strongly depends on the type of peripheral stimulus. For
example, major histocompatibility complex class II and
CC chemokine receptor 2 are all upregulated in spinal
cord microglia following spinal nerve ligation but not
following peripheral inflammation [see review by Tsuda
et al. (520)]. In streptozotocin-induced diabetic rats, tac-
tile hyperalgesia develops that is accompanied by several
characteristic changes of activated microglia in the dorsal
horn, including increases in Iba1 and OX-42 labeling,
hypertrophic morphology. Extracellular signal-regulated
protein kinase and Src-family kinase are both activated
exclusively in microglia (524). The astrocyte marker glial
fibrillary acidic protein is upregulated starting on postop-
erative day 4 through day 28 (512). Taken together, it has
been suggested that microglia is the initial immunoeffec-
tor cell sensor that, if inhibited prior to the onset of
astrocytic activation, may prevent mechanical hyperalge-
sia in various models of neuropathy (512).

2. Substances release by activated microglia

Upon activation microglia produce and release cyto-
kines, prostaglandins, leukotrienes, nitric oxide, reactive
oxygen intermediates, proteolytic enzymes, and excita-
tory amino acids such as glutamate (104). Many of the
substances produced and released by microglia and as-
trocytes may mediate hyperalgesia, including nitric oxide,
prostaglandins, interleukin-1, brain-derived neurotrophic
factor, nerve growth factor, arachidonic acid, and excita-
tory amino acids such as glutamate (561). Other mole-
cules that are expressed in spinal microglia such as che-
motactic cytokine receptor 2, cannabinoid receptor sub-
type 2, and major histocompatibility complex class II
protein may also modulate neuropathic pain.

Platelet activating factor is another substance re-
leased from stimulated microglia cells (208) and by neu-
rons in culture upon stimulation with glutamic acid. It is
a potent chemotactic factor for microglia which express
receptors for platelet activating factor (7).

3. Pain-related behavior modulated

by activated microglia

An early report has shown that peripheral inflamma-
tion of a hindpaw by intraplantar zymosan injections
leads to mechanical and thermal hyperalgesia which in-
volves spinal glia: selective inhibition of glial metabolism
by intrathecal administration of fluorocitrate results in a
marked, but reversible, attenuation of the persistent ther-
mal and mechanical hyperalgesia (334, 351). Furthermore,
intrathecal injection of fractalkine, which selectively ac-
tivates spinal microglia, is sufficient to induce tactile and
thermal hyperalgesia. Blockade of CX3C receptors to
which fractalkine binds reverses hyperalgesia when ap-
plied 5–7 days after a chronic constriction injury of the
sciatic nerve (352).

Proinflammatory cytokines can stimulate the produc-
tion of multiple components of the complement cascade.
Interruption of complement cascade by intrathecal injec-
tion of soluble human complement receptor type 1 re-
verses mechanical hyperalgesia by sciatic inflammatory
neuritis and by chronic constriction injury of sciatic nerve
and by intrathecal injection of the human immunodefi-
ciency virus-gp120 (526) without affecting normal re-
sponses to touch.

Tight ligation of L4/5 spinal nerves leads to activation
of spinal p38 mitogen-activated protein kinase (216, 521),
which in spinal cord is selectively expressed in activated
microglia. Depression of spinal p38 mitogen-activated
protein kinase by intrathecal injection of a blocker
(SB203580) has no effect on basal nociceptive responses
but reverses established mechanical hyperalgesia after
spinal nerve ligation (216, 521). Likewise, mechanical hy-
peralgesia is attenuated by intrathecal inhibition of a
p38 mitogen-activated protein kinase or P2X4 receptor
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blocker or antisense oligonucleotide pretreatment (207).
p38 activation may regulate the expression of inducible
nitric oxide synthase, cyclooxgygenase-2, and cytokines
in microglia through transcriptional and translational ef-
fects. Two weeks after an injury of L5, spinal nerve acti-
vated microglia are detected and dually phosphorylated
active form of p38 mitogen-activated protein kinase and
P2X4 ATP receptors are upregulated in microglia in the
ipsilateral spinal dorsal horn (207).

Intrathecal injection of minocycline, an inhibitor of
microglial cell activation, inhibits mRNA expression of
interleukin-1�, tumor necrosis factor-�, interleukin-1�-
converting enzyme, tumor necrosis factor-�-converting
enzyme, interleukin-1 receptor antagonist, and interleu-
kin-10 as well as mechanical hyperalgesia induced by
either sciatic inflammatory neuritis of by intrathecal in-
jection of human immunodeficiency virus-1 gp120 (276).

Pathogens are detected by specific receptors such as
the toll-like receptor 4, which is selectively expressed by
microglia. Intrathecal antisense oligonucleotides directed
against the expression of toll-like receptor 4 or knock out
of toll-like receptor 4 gene reduces mechanical and ther-
mal hyperalgesia following L5 nerve transection in mice
(511).

Following L5 spinal nerve ligation, extracellular sig-
nal-regulated kinase, a mitogen activated protein kinase,
is transiently (for �6 h) activated in neurons of spinal
dorsal horn and at days 1–10 in spinal microglia and later
in astrocytes as well (623). Mechanical hyperalgesia is
reduced when a high dose of an extracellular signal-
regulated kinase inhibitor (PD98059) is injected intrathe-
cally on days 2, 10, or 21 (623), suggesting its involve-
ment in maintenance of neuropathic pain.

When microglia grown in culture and activated by
ATP are injected intrathecally in rats, mechanical hyper-
algesia similar to that after spinal nerve ligation is in-
duced, while inactive microglia have no effect (522). An-
tisense oligonucleotide targeting the ATP receptor P2X4

diminishes tactile hyperalgesia after spinal nerve ligation.
Blockade of spinal P2X1–4 receptors by intrathecal injec-
tions of 2�,3�-O-(2,4,6-trinitrophenyl)adenosine 5-triphos-
phate (TNP-ATP) temporarily reverses tactile hyperalge-
sia 7 days after spinal nerve ligation (522). Interestingly,
blockade of spinal P2X1,2,3,5,7 receptors (with PPADS)
inhibits pain-related behavior in the first and second
phase of the Formalin test and the responses to capsaicin
(525) but fails to affect tactile hyperalgesia after spinal
nerve ligation (522).

Glia but not neurons express a receptor for interleu-
kin-10. Its activation suppresses release of proinflamma-
tory cytokines. After intrathecal injection, interleukin-10
has a short half-life of �2 h. Gene therapy with an adeno-
viral vector encoded human interleukin-10 prevents and
reverses mechanical and thermal hyperalgesia by chronic
constriction injury of sciatic nerve and mechanical hyper-

algesia by either sciatic inflammatory neuropathy or by
intrathecal injection of gp120, an envelope glycoprotein of
human immunodeficiency virus-1, all of which activates
spinal glia (349). These effects last for more than a week
but are absent at 3 wk. Normal responses to heat or touch
are not affected by this form of gene therapy (349).

Intrathecal morphine application for 5 days but not
single intrathecal morphine injection leads to elevated
levels of interleukin-1 mRNA and protein in spinal dorsal
horn 2 h but not 24 h after discontinuation of morphine
(219). Coadministration of morphine and an interleukin-1
receptor antagonist enhances morphine analgesia and re-
duces development of tolerance to morphine and mor-
phine-induced mechanical and thermal hyperalgesia (219). The
intrathecal injection of neutralizing antibody against the
fractalkine receptor has similar effects (219). Thus acti-
vation of spinal glial cells is an important intermediate
step in the pathogenesis of chronic pain of various ori-
gins.

4. Concluding remarks

Considerable progress has been made in developing
clinically relevant animal models of hyperalgesia and al-
lodynia. Available models cover inflammatory, traumatic,
and neuropathic forms of acute or chronic pain. Standard-
ization of animal models across laboratories has much
improved the reproducibility of published work. Many
efforts are presently being made to unfold the diverse
pain mechanisms at the network, cellular, synaptic, and
molecular levels. It is highly unlikely that a unifying model
will be developed that may explain all forms of hyperal-
gesia and allodynia. It is more likely that a number of
mechanisms are active in parallel and/or in sequence and
that a characteristic pattern of mechanisms will be iden-
tified for a given pain syndrome. Thus a single “magic pain
killer” will hardly be the future treatment of choice; rather,
mechanism-based multimodal treatments that match the par-
ticular phase of pain development will be successful. Much
of the future progress in the field of experimental pain
research will rest on the work that is summarized in this
review.
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3. Afrah AW, Fiskå A, Gjerstad J, Gustafsson H, Tjølsen A,

Olgart L, Stiller CO, Hole K, Brodin E. Spinal substance P
release in vivo during the induction of long-term potentiation in
dorsal horn neurons. Pain 96: 49–55, 2002.

4. Ahlgren SC, Levine JD. Mechanical hyperalgesia in streptozoto-
cin-diabetic rats is not sympathetically maintained. Brain Res 616:
171–175, 1993.

5. Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU. PGE2

selectively blocks inhibitory glycinergic neurotransmission onto
rat superficial dorsal horn neurons. Nat Neurosci 5: 34–40, 2002.

6. Ahn DK, Lim EJ, Kim BC, Yang GY, Lee MK, Ju JS, Han SR,

Bae YC. Compression of the trigeminal ganglion produces pro-
longed nociceptive behavior in rats. Eur J Pain 2008.

7. Aihara M, Ishii S, Kume K, Shimizu T. Interaction between
neurone and microglia mediated by platelet-activating factor.
Genes Cells 5: 397–406, 2000.

8. Akopians AL, Babayan AH, Beffert U, Herz J, Basbaum AI,

Phelps PE. Contribution of the Reelin signaling pathways to no-
ciceptive processing. Eur J Neurosci 27: 523–537, 2008.

9. Aldskogius H, Kozlova EN. Central neuron-glial and glial-glial
interactions following axon injury. Prog Neurobiol 55: 1–26, 1998.

10. Aley KO, Reichling DB, Levine JD. Vincristine hyperalgesia in
the rat: a model of painful vincristine neuropathy in humans.
Neuroscience 73: 259–265, 1996.

11. Allchorne AJ, Broom DC, Woolf CJ. Detection of cold pain, cold
allodynia and cold hyperalgesia in freely behaving rats. Mol Pain 1:
36, 2005.

12. Allen JW, Mantyh PW, Horais K, Tozier N, Rogers SD,

Ghilardi JR, Cizkova D, Grafe MR, Richter P, Lappi DA, Yaksh

TL. Safety evaluation of intrathecal substance P-saporin, a targeted
neurotoxin, in dogs. Toxicol Sci 91: 286–298, 2006.

13. Alloui A, Begon S, Chassaing C, Eschalier A, Gueux E, Rays-

siguier Y, Dubray C. Does Mg2� deficiency induce a long-term
sensitization of the central nociceptive pathways? Eur J Pharma-

col 469: 65–69, 2003.
14. Almeida A, Størkson R, Lima D, Hole K, Tjølsen A. The med-

ullary dorsal reticular nucleus facilitates pain behaviour induced by
formalin in the rat. Eur J Neurosci 11: 110–122, 1999.

15. Alvarez P, Dieb W, Hafidi A, Voisin DL, Dallel R. Insular cortex
representation of dynamic mechanical allodynia in trigeminal neu-
ropathic rats. Neurobiol Dis 33: 89–95, 2009.

16. Alvarez-Vega M, Baamonde A, Hidalgo A, Menéndez L. Effects
of the calcium release inhibitor dantrolene and the Ca2�-ATPase
inhibitor thapsigargin on spinal nociception in rats. Pharmacology

62: 145–150, 2001.
17. Andreev NY, Dimitrieva N, Koltzenburg M, McMahon SB.

Peripheral administration of nerve growth factor in the adult rat
produces a thermal hyperalgesia that requires the presence of
sympathetic post-ganglionic neurones. Pain 63: 109–115, 1995.

18. Anseloni VC, Ennis M, Lidow MS. Optimization of the mechan-
ical nociceptive threshold testing with the Randall-Selitto assay.
J Neurosci Methods 131: 93–97, 2003.

19. Anseloni VC, Gold MS. Inflammation-induced shift in the valence
of spinal GABA-A receptor-mediated modulation of nociception in
the adult rat. J Pain 9: 732–738, 2008.

20. Attal N, Jazat F, Kayser V, Guilbaud G. Further evidence for
“pain-related” behaviours in a model of unilateral peripheral
mononeuropathy. Pain 41: 235–251, 1990.

21. Authier N, Fialip J, Eschalier A, Coudoré F. Assessment of
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